咨询与建议

限定检索结果

文献类型

  • 40 篇 期刊文献
  • 7 篇 会议

馆藏范围

  • 47 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 30 篇 理学
    • 29 篇 数学
    • 2 篇 物理学
    • 2 篇 统计学(可授理学、...
  • 25 篇 工学
    • 11 篇 电气工程
    • 10 篇 计算机科学与技术...
    • 6 篇 信息与通信工程
    • 4 篇 软件工程
    • 3 篇 控制科学与工程
    • 2 篇 电子科学与技术(可...
    • 1 篇 机械工程
    • 1 篇 光学工程
    • 1 篇 化学工程与技术
    • 1 篇 石油与天然气工程
    • 1 篇 交通运输工程
  • 16 篇 管理学
    • 16 篇 管理科学与工程(可...
  • 2 篇 医学
    • 2 篇 临床医学
    • 1 篇 基础医学(可授医学...

主题

  • 47 篇 difference of co...
  • 7 篇 global optimizat...
  • 5 篇 optimality condi...
  • 4 篇 fractional progr...
  • 3 篇 boosted differen...
  • 2 篇 tensor completio...
  • 2 篇 multifacility lo...
  • 2 篇 robust tensor co...
  • 2 篇 alternating opti...
  • 2 篇 correlation meas...
  • 2 篇 optimization
  • 2 篇 difference of co...
  • 2 篇 convex optimizat...
  • 2 篇 kurdyka-lojasiew...
  • 2 篇 global convergen...
  • 2 篇 critical point
  • 2 篇 antenna selectio...
  • 2 篇 nonconvex optimi...
  • 1 篇 power demand
  • 1 篇 wavelet transfor...

机构

  • 3 篇 southeast univ n...
  • 3 篇 portland state u...
  • 2 篇 hunan univ sch m...
  • 2 篇 duy tan univ ins...
  • 2 篇 aalto univ dept ...
  • 2 篇 univ alicante de...
  • 2 篇 univ calif davis...
  • 1 篇 univ hassan 1 la...
  • 1 篇 wayne state univ...
  • 1 篇 natl univ def te...
  • 1 篇 univ hong kong d...
  • 1 篇 univ vienna dept...
  • 1 篇 princeton univ d...
  • 1 篇 univ michigan an...
  • 1 篇 hangzhou normal ...
  • 1 篇 univ valencia de...
  • 1 篇 purple mt labs p...
  • 1 篇 univ southampton...
  • 1 篇 univ sevilla fac...
  • 1 篇 chiba inst techn...

作者

  • 3 篇 nguyen mau nam
  • 2 篇 roubi a.
  • 2 篇 ghazi a.
  • 2 篇 gao xiqi
  • 2 篇 vuong p. t.
  • 2 篇 sun chen
  • 2 篇 nguyen thai an
  • 2 篇 campoy r.
  • 2 篇 ding zhi
  • 2 篇 bai minru
  • 2 篇 steinwandt jens
  • 2 篇 vorobyov sergiy ...
  • 2 篇 haardt martin
  • 1 篇 giallombardo gio...
  • 1 篇 roubi ahmed
  • 1 篇 vuong phan t.
  • 1 篇 song mei
  • 1 篇 yin penghang
  • 1 篇 gruzdeva tatiana...
  • 1 篇 ng michael k.

语言

  • 45 篇 英文
  • 2 篇 其他
检索条件"主题词=Difference of Convex Functions"
47 条 记 录,以下是1-10 订阅
排序:
Multi-target elliptic positioning via difference of convex functions programming
收藏 引用
SIGNAL PROCESSING 2025年 234卷
作者: Dang, Xudong Liu, Hongwei Yan, Junkun Xidian Univ Natl Key Lab Radar Signal Proc 2 South Taibai Rd Xian 710071 Shaanxi Peoples R China
Multi-target localization in a distributed multiple-input multiple-output radar is quite challenging as the correct measurement-target associations in each transmitter-receiver pair are unknown. In this paper, we addr... 详细信息
来源: 评论
Optimality conditions and DC-Dinkelbach-type algorithm for vector fractional programming problems with ratios of difference of convex functions
收藏 引用
OPTIMIZATION 2025年 第2期74卷 427-457页
作者: Ghazi, A. Roubi, A. Hassan First Univ Fac Sci Tech Lab MISI Settat Morocco
\In this work, necessary optimality conditions of KKT type for (weak) Pareto optimality are derived and a DC-Dinkelbach-type algorithm is proposed for vector fractional mathematical programs with ratios of difference ... 详细信息
来源: 评论
Data fitting with signomial programming compatible difference of convex functions
收藏 引用
OPTIMIZATION AND ENGINEERING 2023年 第2期24卷 973-987页
作者: Karcher, Cody J. MIT Dept Aeronaut & Astronaut 77 Massachusetts Ave Cambridge MA 02139 USA
Signomial Programming (SP) has proven to be a powerful tool for engineering design optimization, striking a balance between the computational efficiency of Geometric Programming (GP) and the extensibility of more gene... 详细信息
来源: 评论
THE BOOSTED difference of convex functions ALGORITHM FOR NONSMOOTH functions
收藏 引用
SIAM JOURNAL ON OPTIMIZATION 2020年 第1期30卷 980-1006页
作者: Aragon Artacho, Francisco J. Vuong, Phan T. Univ Alicante Dept Math Alicante Spain Univ Southampton Sch Math Sci Southampton SO17 1BJ Hants England
The boosted difference of convex functions algorithm (BDCA) was recently proposed for minimizing smooth difference of convex (DC) functions. BDCA accelerates the convergence of the classical difference of convex funct... 详细信息
来源: 评论
Optimality Conditions and a Method of Centers for Minimax Fractional Programs with difference of convex functions
收藏 引用
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS 2020年 第1期187卷 105-132页
作者: Boufi, Karima El Haffari, Mostafa Roubi, Ahmed Univ Hassan 1 Fac Sci & Tech Lab MISI Settat Morocco Univ Abdelmalek Essaadi Lab MISI Tetouan Morocco Univ Abdelmalek Essaadi Ecole Normale Super Tetouan Morocco
We are concerned in this paper with minimax fractional programs whose objective functions are the maximum of finite ratios of difference of convex functions, with constraints also described by difference of convex fun... 详细信息
来源: 评论
Alternating direction method of multipliers with difference of convex functions
收藏 引用
ADVANCES IN COMPUTATIONAL MATHEMATICS 2018年 第3期44卷 723-744页
作者: Sun, Tao Yin, Penghang Cheng, Lizhi Jiang, Hao Natl Univ Def Technol Coll Sci Changsha 410073 Hunan Peoples R China Univ Calif Los Angeles Dept Math Los Angeles CA 90095 USA Natl Univ Def Technol Coll Sci Changsha 410073 Hunan Peoples R China Natl Univ Def Technol State Key Lab High Performance Computat Changsha 410073 Hunan Peoples R China Natl Univ Def Technol Coll Comp Changsha 410073 Hunan Peoples R China
In this paper, we consider the minimization of a class of nonconvex composite functions with difference of convex structure under linear constraints. While this kind of problems in theory can be solved by the celebrat... 详细信息
来源: 评论
Global optimization method for maximizing the sum of difference of convex functions ratios over nonconvex region
收藏 引用
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING 2013年 第1-2期41卷 153-169页
作者: Pei, Yonggang Zhu, Detong Shanghai Normal Univ Math & Sci Coll Shanghai 200234 Peoples R China Shanghai Normal Univ Business Coll Shanghai 200234 Peoples R China
A global optimization algorithm is presented for maximizing the sum of difference of convex functions ratios problem over nonconvex feasible region. This algorithm is based on branch and bound framework. To obtain a d... 详细信息
来源: 评论
Nonconvex Optimization Problems for Maximum Hands-Off Control
收藏 引用
IEEE TRANSACTIONS ON AUTOMATIC CONTROL 2025年 第3期70卷 1905-1912页
作者: Ikeda, Takuya Univ Kitakyushu Fac Environm Engn Fukuoka 8080135 Japan
Maximum hands-off control is the optimal solution to the L(0 )optimal control problem. While convex approximation is typically used to relax this problem, it does not necessarily result in maximum hands-off control. T... 详细信息
来源: 评论
A global interior point method for nonconvex geometric programming
收藏 引用
OPTIMIZATION AND ENGINEERING 2024年 第2期25卷 605-+页
作者: do Nascimento, Roberto Quirino Santos, Rubia Mara de Oliveira Maculan, Nelson Univ Fed Paraiba Dept Sci Comp Joao Pessoa Brazil Univ Fed Mato Grosso do Sul Dept Math Campo Grande Brazil Univ Fed Rio De Janeiro Coppe Sistemas Rio De Janeiro Brazil
The strategy presented in this paper differs significantly from existing approaches as we formulate the problem as a standard optimization problem of difference of convex functions. We have developed the necessary and... 详细信息
来源: 评论
A global two-stage algorithm for non-convex penalized high-dimensional linear regression problems
收藏 引用
COMPUTATIONAL STATISTICS 2023年 第2期38卷 871-898页
作者: Li, Peili Liu, Min Yu, Zhou East China Normal Univ KLATASDS MOE Sch Stat Shanghai 200062 Peoples R China Wuhan Univ Sch Math & Stat Wuhan 430072 Peoples R China
By the asymptotic oracle property, non-convex penalties represented by minimax concave penalty (MCP) and smoothly clipped absolute deviation (SCAD) have attracted much attentions in high-dimensional data analysis, and... 详细信息
来源: 评论