咨询与建议

限定检索结果

文献类型

  • 3 篇 期刊文献

馆藏范围

  • 3 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3 篇 理学
    • 3 篇 数学
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
  • 2 篇 工学
    • 1 篇 信息与通信工程
    • 1 篇 软件工程

主题

  • 3 篇 fractional progr...
  • 3 篇 dinkelbach algor...
  • 2 篇 optimality condi...
  • 1 篇 convex programmi...
  • 1 篇 proximal point m...
  • 1 篇 bundle methods
  • 1 篇 difference of co...
  • 1 篇 quotient of conv...
  • 1 篇 dc programming

机构

  • 2 篇 univ hassan 1 la...
  • 1 篇 univ montreal di...
  • 1 篇 univ namur fundp...
  • 1 篇 univ clermont fe...

作者

  • 1 篇 roubi ahmed
  • 1 篇 roubi a.
  • 1 篇 nguyen van hien
  • 1 篇 ghazi abdelouafi
  • 1 篇 strodiot jean-ja...
  • 1 篇 ghazi a.
  • 1 篇 ferland jacques ...
  • 1 篇 crouzeix jean-pi...

语言

  • 3 篇 英文
检索条件"主题词=Dinkelbach algorithms"
3 条 记 录,以下是1-10 订阅
排序:
Optimality conditions and DC-dinkelbach-type algorithm for generalized fractional programs with ratios of difference of convex functions
收藏 引用
OPTIMIZATION LETTERS 2021年 第7期15卷 2351-2375页
作者: Ghazi, Abdelouafi Roubi, Ahmed Univ Hassan 1 Lab MISI Fac Sci & Tech Settat Morocco
In this paper, we develop optimality conditions and propose an algorithm for generalized fractional programming problems whose objective function is the maximum of finite ratios of difference of convex (dc) functions,... 详细信息
来源: 评论
A DC approach for minimax fractional optimization programs with ratios of convex functions
收藏 引用
OPTIMIZATION METHODS & SOFTWARE 2022年 第2期37卷 639-657页
作者: Ghazi, A. Roubi, A. Univ Hassan 1 Lab MISI Fac Sci & Tech Settat Morocco
This paper deals with minimax fractional programs whose objective functions are the maximum of finite ratios of convex functions, with arbitrary convex constraints set. For such problems, dinkelbach-type algorithms fa... 详细信息
来源: 评论
An inexact proximal point method for solving generalized fractional programs
收藏 引用
JOURNAL OF GLOBAL OPTIMIZATION 2008年 第1期42卷 121-138页
作者: Strodiot, Jean-Jacques Crouzeix, Jean-Pierre Ferland, Jacques A. Nguyen, Van Hien Univ Namur FUNDP Dept Math Namur Belgium Univ Clermont Ferrand LIMOS CNRS UMR 6158 Clermont Ferrand France Univ Montreal DIRO Montreal PQ Canada
In this paper, we present several new implementable methods for solving a generalized fractional program with convex data. They are dinkelbach-type methods where a prox-regularization term is added to avoid the numeri... 详细信息
来源: 评论