Land surface albedo is an important variable for Earth's radiation and energy budget. Over the past decades, many surface albedo products have been derived from a variety of remote sensing data. However, the estim...
详细信息
Land surface albedo is an important variable for Earth's radiation and energy budget. Over the past decades, many surface albedo products have been derived from a variety of remote sensing data. However, the estimation accuracy, temporal resolution, and temporal continuity of these datasets still need to be improved. We developed a multi-sensor strategy (MSS) based on the direct-estimationalgorithm (DEA) and Statistical-Based Temporal Filter (STF) to improve the quality of land surface albedo datasets. The moderate-resolution imaging spectroradiometer (MODIS) data onboard Terra and Aqua and the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi-National Polar-orbiting Partnership (NPP) were used as multi-sensor data. The MCD43A3 product and in situ measurements from the Surface Radiation Budget Network (SURFRAD) and FLUXNET sites were employed for validation and comparison. The results showed that the proposed MSS method significantly improved the temporal continuity and estimation accuracy during the snow-covered period, which was more consistent with the measurements of SURFRAD (R = 0.9498, root mean square error (RMSE) = 0.0387, and bias = -0.0017) and FLUXNET (R = 0.9421, RMSE = 0.0330, and bias = 0.0002) sites. Moreover, this is a promising method to generate long-term, spatiotemporal continuous land surface albedo datasets with high temporal resolution.
Snow albedo is a key geophysical parameter that controls the energy exchanges between the atmosphere and Earth's surfaces and has been widely utilized in climatic and environmental change studies. However, recent ...
详细信息
Snow albedo is a key geophysical parameter that controls the energy exchanges between the atmosphere and Earth's surfaces and has been widely utilized in climatic and environmental change studies. However, recent studies have demonstrated that current albedo satellite products still have large uncertainties in snow-covered areas. In this study, we estimated the blue-sky shortwave albedo of snow surfaces using the eXtreme Gradient Boosting (XGBoost) algorithm with Moderate Resolution Imaging Spectroradiometer (MODIS) top-of-atmosphere (TOA) reflectance values, ERA-5 land reanalysis snow parameters (e.g., snow cover, snow density and snow depth water equivalent) and in situ measurements. In the XGBoost model, the MODIS MCD43 albedo values were input as prior knowledge, and the random sample validation results showed that the R2 2 and root mean square error (RMSE) values of this model were approximately 0.953 and 0.044, respectively. The typical sites for independent validation were subjected to in situ measurements at the UPE_L, AWS5, and CA_ARB sites. Finally, the retrieved XGBoost albedo values were compared with the official NASA MODIS (MCD43, collection 6), the Global Land Surface Satellite (GLASS), and the National Oceanic and Atmospheric Administration (NOAA) Visible Infrared Imaging Radiometer Suite (VIIRS) SURFALB albedo products. The validation results indicated that the proposed approach achieved much greater accuracy (RMSE = 0.052, bias = 0.002) than did the corresponding official MODIS (RMSE = 0.087, bias =-0.033), GLASS (RMSE = 0.089, bias =-0.031) and VIIRS SURFALB albedo (RMSE = 0.100, bias =-0.032) products. The improved shortwave albedo captured the rapid temporal changes in surface snow conditions.
Surface albedo plays a key role in global climate modeling as a factor controlling the energy budget. Satellite observations were utilized to estimate surface albedo at global and regional scales with good precision o...
详细信息
Surface albedo plays a key role in global climate modeling as a factor controlling the energy budget. Satellite observations were utilized to estimate surface albedo at global and regional scales with good precision over flat areas. However, because topography greatly complicates radiative transfer (RT) processes, estimating the albedo of rugged terrain with satellite data remains a challenge. In addition, albedo definitions over sloping terrain differ from that for flat areas. They include horizontal/horizontal sloped surface albedo (HHSA) and inclined/inclined sloped surface albedo (IISA). Methods for retrieving HHSA and IISA in mountains have not been well-explored. Here, we retrieved HHSA and IISA on sloping terrain from Landsat 8 using a direct estimation algorithm. We simulated a dataset of Landsat top-of-atmosphere (TOA) reflectance and surface albedo with discrete anisotropic radiative transfer (DART) model, for variable atmospheric, vegetation, soil, and topography properties. Then, we used artificial neural networks (ANNs) to derive an empirical relationship between TOA reflectance and surface albedo. The accuracy of our method was verified with in situ measurements: root mean squared error (RMSE) and bias equal to 0.029 and -0.010 for HHSA, and 0.023 and -0.001 for IISA, respectively. Several albedo results (HHSA, IISA, values without topographic consideration) were evaluated and compared. HHSA was found similar to albedo without topographic consideration, but IISA, considered as the "true albedo" for sloping terrain, showed large difference from them. This study demonstrated the feasibility of surface albedo estimation from Landsat TOA reflectance directly in rugged terrains and advanced our understanding of energy budget in mountains.
暂无评论