Bat algorithm (BA) is one of the recently proposed heuristic algorithms imitating the echolocation behavior of bats to perform global optimization. The superior performance of this algorithm has been proven among the ...
详细信息
Bat algorithm (BA) is one of the recently proposed heuristic algorithms imitating the echolocation behavior of bats to perform global optimization. The superior performance of this algorithm has been proven among the other most well-known algorithms such as genetic algorithm (GA) and particle swarm optimization (PSO). However, the original version of this algorithm is suitable for continuous problems, so it cannot be applied to binary problems directly. In this paper, a binary version of this algorithm is proposed. A comparative study with binary PSO and GA over twenty-two benchmark functions is conducted to draw a conclusion. Furthermore, Wilcoxon's rank-sum nonparametric statistical test was carried out at 5 % significance level to judge whether the results of the proposed algorithm differ from those of the other algorithms in a statistically significant way. The results prove that the proposed binary bat algorithm (BBA) is able to significantly outperform others on majority of the benchmark functions. In addition, there is a real application of the proposed method in optical engineering called optical buffer design at the end of the paper. The results of the real application also evidence the superior performance of BBA in practice.
We present an algebraic approach for dealing with combinatorial optimization problems based on permutations with repetition. The approach is an extension of an algebraic framework defined for combinatorial search spac...
详细信息
ISBN:
(数字)9783030436803
ISBN:
(纸本)9783030436797;9783030436803
We present an algebraic approach for dealing with combinatorial optimization problems based on permutations with repetition. The approach is an extension of an algebraic framework defined for combinatorial search spaces which can be represented by a group (in the algebraic sense). Since permutations with repetition does not have the group structure, in this work we derive some definitions and we devise discrete operators that allow to design algebraic evolutionaryalgorithms whose search behavior is in line with the algebraic framework. In particular, a discrete Differential Evolution algorithm which directly works on the space of permutations with repetition is defined and analyzed. As a case of study, an implementation of this algorithm is provided for the Job Shop Scheduling Problem. Experiments have been held on commonly adopted benchmark suites, and they show that the proposed approach obtains competitive results compared to the known optimal objective values.
暂无评论