咨询与建议

限定检索结果

文献类型

  • 277 篇 期刊文献
  • 247 篇 会议
  • 7 篇 学位论文

馆藏范围

  • 531 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 505 篇 工学
    • 426 篇 计算机科学与技术...
    • 234 篇 电气工程
    • 169 篇 信息与通信工程
    • 67 篇 软件工程
    • 34 篇 控制科学与工程
    • 12 篇 网络空间安全
    • 7 篇 电子科学与技术(可...
    • 7 篇 交通运输工程
    • 6 篇 石油与天然气工程
    • 4 篇 仪器科学与技术
    • 3 篇 机械工程
    • 3 篇 土木工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 动力工程及工程热...
    • 2 篇 生物医学工程(可授...
    • 2 篇 安全科学与工程
  • 41 篇 理学
    • 22 篇 数学
    • 10 篇 物理学
    • 7 篇 化学
    • 4 篇 生物学
    • 2 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 29 篇 管理学
    • 25 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
    • 3 篇 工商管理
    • 2 篇 公共管理
  • 12 篇 医学
    • 6 篇 基础医学(可授医学...
    • 6 篇 临床医学
  • 3 篇 法学
    • 3 篇 法学
  • 1 篇 哲学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 艺术学

主题

  • 531 篇 distributed mach...
  • 144 篇 federated learni...
  • 51 篇 training
  • 47 篇 computational mo...
  • 46 篇 edge computing
  • 42 篇 machine learning
  • 41 篇 servers
  • 36 篇 data models
  • 22 篇 deep learning
  • 22 篇 convergence
  • 21 篇 data privacy
  • 20 篇 task analysis
  • 19 篇 big data
  • 17 篇 privacy
  • 16 篇 internet of thin...
  • 15 篇 stochastic gradi...
  • 15 篇 distributed data...
  • 14 篇 wireless communi...
  • 14 篇 optimization
  • 14 篇 blockchain

机构

  • 8 篇 hong kong polyte...
  • 7 篇 peng cheng lab p...
  • 5 篇 univ texas austi...
  • 5 篇 south china univ...
  • 5 篇 chongqing univ c...
  • 5 篇 wuhan univ sch c...
  • 5 篇 peking univ key ...
  • 5 篇 peking univ sch ...
  • 5 篇 chinese acad sci...
  • 5 篇 hangzhou dianzi ...
  • 4 篇 univ sci & techn...
  • 4 篇 sun yat sen univ...
  • 4 篇 nanyang technol ...
  • 4 篇 deakin univ sch ...
  • 4 篇 microsoft res re...
  • 4 篇 minist educ key ...
  • 4 篇 macquarie univ d...
  • 4 篇 ibm tj watson re...
  • 4 篇 univ calif berke...
  • 4 篇 tencent inc peop...

作者

  • 7 篇 jiang jiawei
  • 7 篇 yang lei
  • 7 篇 zhang jilin
  • 7 篇 wang shiqiang
  • 6 篇 guo song
  • 6 篇 cui bin
  • 6 篇 cao jiannong
  • 5 篇 duan moming
  • 5 篇 zhou ruiting
  • 5 篇 lee sangsu
  • 5 篇 tan yujuan
  • 5 篇 wang jue
  • 5 篇 zheng xi
  • 5 篇 julien christine
  • 5 篇 liu duo
  • 5 篇 yu hongfang
  • 5 篇 ren yongjian
  • 5 篇 chen xianzhang
  • 4 篇 zhou li
  • 4 篇 bennis mehdi

语言

  • 524 篇 英文
  • 7 篇 其他
检索条件"主题词=Distributed Machine Learning"
531 条 记 录,以下是21-30 订阅
排序:
Model averaging in distributed machine learning: a case study with Apache Spark
收藏 引用
VLDB JOURNAL 2021年 第4期30卷 693-712页
作者: Guo, Yunyan Zhang, Zhipeng Jiang, Jiawei Wu, Wentao Zhang, Ce Cui, Bin Li, Jianzhong Harbin Inst Technol Mass Data Comp Res Ctr Harbin 150001 Peoples R China Peking Univ Sch EECS Beijing 100871 Peoples R China Microsoft Res Redmond WA USA Swiss Fed Inst Technol Dept Comp Sci CH-8092 Zurich Switzerland
The increasing popularity of Apache Spark has attracted many users to put their data into its ecosystem. On the other hand, it has been witnessed in the literature that Spark is slow when it comes to distributed machi... 详细信息
来源: 评论
DPS: Dynamic Pricing and Scheduling for distributed machine learning Jobs in Edge-Cloud Networks
收藏 引用
IEEE TRANSACTIONS ON MOBILE COMPUTING 2023年 第11期22卷 6377-6393页
作者: Zhou, Ruiting Wang, Ne Huang, Yifeng Pang, Jinlong Chen, Hao Southeast Univ Sch Comp Sci & Engn Nanjing 211189 Peoples R China Wuhan Univ Sch Comp Sci Wuhan 430072 Peoples R China Wuhan Univ Sch Cyber Sci & Engn Key Lab Aerosp Informat Secur & Trusted Comp Minist Educ Wuhan 430072 Peoples R China Huawei Nanjing 210019 Peoples R China
5G and Internet of Things stimulate smart applications of edge computing, such as autonomous driving and smart city. As edge computing power increases, more and more machine learning (ML) jobs will be trained in the e... 详细信息
来源: 评论
UbiNN: A Communication Efficient Framework for distributed machine learning in Edge Computing
收藏 引用
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 2023年 第6期10卷 3368-3383页
作者: Li, Ke Chen, Kexun Luo, Shouxi Zhang, Honghao Fan, Pingzhi Southwest Jiaotong Univ Sch Comp & Artificial Intelligence Chengdu 611756 Peoples R China Southwest Jiaotong Univ Prov Key Lab Informat Coding &Transmiss Chengdu 611756 Peoples R China
Deployment of distributed machine learning at the edge is conducive to reducing latency and protecting privacy associated with transmitting data back to the cloud. Nonetheless, as machine learning models scale, bandwi... 详细信息
来源: 评论
Toward Efficient Online Scheduling for distributed machine learning Systems
收藏 引用
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 2022年 第4期9卷 1951-1969页
作者: Yu, Menglu Liu, Jia Wu, Chuan Ji, Bo Bentley, Elizabeth S. Iowa State Univ Dept Comp Sci Ames IA 50011 USA Ohio State Univ Dept Elect & Comp Engn Columbus OH 43210 USA Virginia Tech Dept Comp Sci Blacksburg VA 24061 USA Univ Hong Kong Dept Comp Sci Hong Kong 999077 Peoples R China Air Force Res Lab Informat Directorate Rome NY 13441 USA
Recent years have witnessed a rapid growth of distributed machine learning (ML) frameworks, which exploit the massive parallelism of computing clusters to expedite ML training. However, the proliferation of distribute... 详细信息
来源: 评论
Computation Scheduling for distributed machine learning With Straggling Workers
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2019年 第24期67卷 6270-6284页
作者: Amiri, Mohammad Mohammadi Gunduz, Deniz Princeton Univ Dept Elect Engn Princeton NJ 08544 USA Imperial Coll London Dept Elect & Elect Engn London SW7 2AZ England
We study scheduling of computation tasks across $n$ workers in a large scale distributed learning problem with the help of a master. Computation and communication delays are assumed to be random, and redundant computa... 详细信息
来源: 评论
Online Scheduling of distributed machine learning Jobs for Incentivizing Sharing in Multi-Tenant Systems
收藏 引用
IEEE TRANSACTIONS ON COMPUTERS 2023年 第3期72卷 653-667页
作者: Wang, Ne Zhou, Ruiting Han, Ling Chen, Hao Li, Zongpeng Wuhan Univ Sch Comp Sci Wuhan 430072 Peoples R China Wuhan Univ Sch Comp Sci Sch Cyber Sci & EngnMinist Educ Key Lab Aerosp Informat Secur & Trusted Comp Wuhan 430072 Peoples R China Duke Univ Dept Comp Sci Durham NC 27708 USA Huawei Nanjing 211100 Jiangsu Peoples R China Tsinghua Univ Inst Network Sci & Cyberspace Beijing 100190 Peoples R China
To save cost, companies usually train machine learning (ML) models on a shared multi-tenant system. In this cooperative environment, one of the fundamental challenges is how to distribute resources fairly among tenant... 详细信息
来源: 评论
When In-Network Computing Meets distributed machine learning
收藏 引用
IEEE NETWORK 2024年 第5期38卷 238-246页
作者: Zhu, Haowen Jiang, Wenchao Hong, Qi Guo, Zehua Beijing Inst Technol Beijing 100081 Peoples R China Beijing Inst Technol Zhengzhou Res Inst Zhengzhou 450000 Peoples R China Singapore Univ Technol & Design Informat Syst Technol & Design Singapore 487372 Singapore
Emerging In-Network Computing (INC) technique provides a new opportunity to improve application's performance by using network programmability, computational capability, and storage capacity enabled by programmabl... 详细信息
来源: 评论
GreedW: A Flexible and Efficient Decentralized Framework for distributed machine learning
收藏 引用
IEEE TRANSACTIONS ON COMPUTERS 2024年 第3期73卷 801-814页
作者: Wang, Ting Jiang, Xin Li, Qin Cai, Haibin East China Normal Univ Software Engn Inst Engn Res Ctr Software Hardware Codesign Technol & Shanghai Key Lab Trustworthy Comp Shanghai 200062 Peoples R China
With the ever-increasing demand for computing power in deep learning, distributed training techniques have proven to be effective in meeting these demands. However, current existing state-of-the-art distributed traini... 详细信息
来源: 评论
A scalable distributed machine learning approach for attack detection in edge computing environments
收藏 引用
JOURNAL OF PARALLEL AND distributed COMPUTING 2018年 119卷 18-26页
作者: Kozik, Rafal Choras, Michal Ficco, Massimo Palmieri, Francesco UTP Univ Sci & Technol Bydgoszcz Inst Telecommun & Comp Sci Bydgoszcz Poland Univ Campania Luigi Vanvitelli Dept Ind & Informat Engn Aversa CE Italy Univ Salerno Dept Comp Sci Fisciano SA Italy
The ever-increasing number of loT applications and cyber-physical services is introducing significant challenges associated to their cyber-security. Due to the constrained nature of the involved devices, some heavier ... 详细信息
来源: 评论
Edge/Cloud Infinite-Time Horizon Resource Allocation for distributed machine learning and General Tasks
收藏 引用
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 2024年 第1期21卷 697-713页
作者: Sartzetakis, Ippokratis Soumplis, Polyzois Pantazopoulos, Panagiotis Katsaros, Konstantinos V. Sourlas, Vasilis Varvarigos, Emmanouel Natl Tech Univ Athens Sch Elect & Comp Engn Athens 15773 Greece Natl Tech Univ Athens Inst Commun & Comp Syst Athens 15773 Greece
Edge computing has emerged as a computing paradigm where the application and data processing takes place close to the end devices. It decreases the distances over which data transfers are made, offering reduced delay ... 详细信息
来源: 评论