distributedsourcecoding (DSC) schemes rely on separate encoding but joint decoding of statistically dependent sources, which exhibit correlation. DSC has numerous promising applications ranging from reduced-complexi...
详细信息
distributedsourcecoding (DSC) schemes rely on separate encoding but joint decoding of statistically dependent sources, which exhibit correlation. DSC has numerous promising applications ranging from reduced-complexity handheld video communications to onboard hyperspectral image coding under computational limitations. The concept of separate encoding at the first sight compromises the attainable encoding performance. However, the DSC theory proves that independent encoding can in fact be designed as efficiently as joint encoding, as long as joint decoding is allowed. More specifically, distributedjointsource-channel coding (DJSC) is associated with the scenario, where the correlated source signals are transmitted through a noisy channel. In this paper, we present a concise historic background of DSC concerning both its theory and its practical aspects. In addition, a series of turbo trellis-coded modulation (TTCM)-aided DJSC-based cooperative transmission schemes are proposed. DJSC scheme is conceived for the transmission of a pair of correlated sources to a destination node (DN). The first source sequence is TTCM encoded, and then, it is compressed before it is transmitted both over a Rayleigh fading channel, where the second source signal is assumed to be perfectly decoded side-information at the DN for the sake of improving the achievable decoding performance of the first source. The proposed scheme is capable of performing reliable communications for various levels of correlation near to the theoretical Slepian-Wolf/Shannon (SW/S) limit. Pursuing our objective of designing practical DJSC schemes, we further extended the above-mentioned arrangement to a more realistic cooperative communication system, where the pair of correlated sources are transmitted to a DN with the aid of a relay node (RN). Explicitly, the pair of correlated source sequences are TTCM encoded and compressed before transmission over a Rayleigh fading multiple access channel, where our propo
暂无评论