In this note we answer some questions on LCD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgr...
详细信息
In this note we answer some questions on LCD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ LCD }$$\end{document} group codes posed in de la Cruz and Willems (Des codes Cryptogr 86:2065-2073, 2018) and (Vietnam J Math 51:721-729, 2023). Furthermore, over prime fields we determine completely the p-part of the divisor of an LCD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ LCD }$$\end{document} group code. In addition we present a natural construction of nearly LCD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ LCD }$$\end{document} codes.
We study the functional codes of order h defined by G. Lachaud on a non-degenerate Hermitian variety, by exhibiting a result on divisibility for all the weights of such codes. In the case where the functional code is ...
详细信息
We study the functional codes of order h defined by G. Lachaud on a non-degenerate Hermitian variety, by exhibiting a result on divisibility for all the weights of such codes. In the case where the functional code is defined by evaluating quadratic functions on the non-degenerate Hermitian surface, we list the first five weights, describe the geometrical structure of the corresponding quadrics and give a positive answer to a conjecture formulated on this question by Edoukou (2009) [8]. The paper ends with two conjectures. The first is about the divisibility of the weights in the functional codes. The second is about the minimum distance and the distribution of the codewords of the first 2h + 1 weights. (C) 2011 Elsevier Inc. All rights reserved.
暂无评论