咨询与建议

限定检索结果

文献类型

  • 328 篇 会议
  • 257 篇 期刊文献
  • 16 篇 学位论文
  • 1 篇 资讯

馆藏范围

  • 602 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 527 篇 工学
    • 469 篇 计算机科学与技术...
    • 126 篇 电气工程
    • 58 篇 软件工程
    • 49 篇 控制科学与工程
    • 44 篇 信息与通信工程
    • 13 篇 机械工程
    • 8 篇 电子科学与技术(可...
    • 6 篇 网络空间安全
    • 4 篇 生物工程
    • 3 篇 生物医学工程(可授...
  • 88 篇 管理学
    • 50 篇 管理科学与工程(可...
    • 37 篇 图书情报与档案管...
    • 7 篇 工商管理
    • 5 篇 公共管理
  • 49 篇 理学
    • 22 篇 数学
    • 9 篇 生物学
    • 8 篇 物理学
    • 7 篇 系统科学
    • 5 篇 统计学(可授理学、...
    • 4 篇 化学
  • 34 篇 医学
    • 21 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 3 篇 公共卫生与预防医...
  • 27 篇 文学
    • 23 篇 外国语言文学
    • 4 篇 新闻传播学
  • 11 篇 法学
    • 6 篇 社会学
    • 3 篇 法学
    • 2 篇 政治学
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 5 篇 教育学
    • 3 篇 教育学
  • 2 篇 农学
  • 1 篇 历史学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 602 篇 document classif...
  • 54 篇 machine learning
  • 49 篇 text mining
  • 44 篇 natural language...
  • 35 篇 deep learning
  • 30 篇 information retr...
  • 21 篇 text classificat...
  • 17 篇 data mining
  • 14 篇 svm
  • 13 篇 text categorizat...
  • 13 篇 document represe...
  • 13 篇 support vector m...
  • 13 篇 information extr...
  • 12 篇 document cluster...
  • 12 篇 feature extracti...
  • 12 篇 naive bayes
  • 11 篇 support vector m...
  • 11 篇 topic modeling
  • 11 篇 feature selectio...
  • 11 篇 word embedding

机构

  • 7 篇 henan univ techn...
  • 5 篇 smart engines se...
  • 5 篇 yooz 1 rue flemi...
  • 4 篇 la rochelle univ...
  • 4 篇 russian acad sci...
  • 3 篇 sichuan univ col...
  • 3 篇 chengdu univ inf...
  • 3 篇 beijing inst tec...
  • 3 篇 univ west bohemi...
  • 3 篇 brno university ...
  • 3 篇 moscow inst phys...
  • 3 篇 ras inst informa...
  • 3 篇 chinese univ hon...
  • 2 篇 univ west bohemi...
  • 2 篇 chinese univ hon...
  • 2 篇 norwegian univ s...
  • 2 篇 tanta univ math ...
  • 2 篇 univ miami dept ...
  • 2 篇 mitre corp 7525 ...
  • 2 篇 brigham young un...

作者

  • 9 篇 wang ziqiang
  • 7 篇 sun xia
  • 6 篇 lenc ladislav
  • 6 篇 coustaty mickael
  • 6 篇 kastrati zenun
  • 6 篇 kral pavel
  • 5 篇 arlazarov vladim...
  • 5 篇 imran ali shariq
  • 5 篇 joseph aurelie
  • 5 篇 ananiadou sophia
  • 4 篇 gao xiaoying
  • 4 篇 fu wenlong
  • 4 篇 xue bing
  • 4 篇 zhang mengjie
  • 3 篇 baba kensuke
  • 3 篇 suo xinhua
  • 3 篇 lee lam hong
  • 3 篇 russo cristiano
  • 3 篇 skoryukina natal...
  • 3 篇 yayilgan sule yi...

语言

  • 586 篇 英文
  • 7 篇 其他
  • 4 篇 土耳其文
  • 4 篇 中文
  • 1 篇 西班牙文
检索条件"主题词=Document Classification"
602 条 记 录,以下是51-60 订阅
排序:
An efficient Wikipedia semantic matching approach to text document classification
收藏 引用
INFORMATION SCIENCES 2017年 393卷 15-28页
作者: Wu, Zongda Zhu, Hui Li, Guiling Cui, Zongmin Huang, Hui Li, Jun Chen, Enhong Xu, Guandong Wenzhou Univ Oujiang Coll Wenzhou Zhejiang Peoples R China Wenzhou Vocat Coll Sci & Technol Wenzhou Zhejiang Peoples R China China Univ Geosci Sch Comp Sci Wuhan Peoples R China Jiujiang Univ Sch Informat Sci & Technol Jiujiang Jiangxi Peoples R China Wenzhou Univ Coll Phys & Elect Informat Engn Wenzhou Zhejiang Peoples R China Univ Sci & Technol China Sch Comp Sci & Technol Hefei Anhui Peoples R China Univ Technol Sydney Fac Engn & IT Sydney NSW Australia
A traditional classification approach based on keyword matching represents each text document as a set of keywords, without considering the semantic information, thereby, reducing the accuracy of classification. To so... 详细信息
来源: 评论
Long document classification From Local Word Glimpses via Recurrent Attention Learning
收藏 引用
IEEE ACCESS 2019年 7卷 40707-40718页
作者: He, Jun Wang, Liqun Liu, Liu Feng, Jiao Wu, Hao Nanjing Univ Informat Sci & Technol Sch Elect & Informat Engn Nanjing 210044 Jiangsu Peoples R China Yunnan Univ Sch Informat Sci & Engn Kunming 650091 Yunnan Peoples R China
document classification requires to extract high-level features from low-level word vectors. Typically, feature extraction by deep neural networks makes use of all words in a document, which cannot scale well for a lo... 详细信息
来源: 评论
Genetic Programming for document classification: A Transductive Transfer Learning System
收藏 引用
IEEE TRANSACTIONS ON CYBERNETICS 2024年 第2期54卷 1119-1132页
作者: Fu, Wenlong Xue, Bing Gao, Xiaoying Zhang, Mengjie Victoria Univ Wellington Sch Engn & Comp Sci Wellington 6140 New Zealand
document classification is a challenging task to the data being high-dimensional and sparse. Many transfer learning methods have been investigated for improving the classification performance by effectively transferri... 详细信息
来源: 评论
Twin labeled LDA: a supervised topic model for document classification
收藏 引用
APPLIED INTELLIGENCE 2020年 第12期50卷 4602-4615页
作者: Wang, Wei Guo, Bing Shen, Yan Yang, Han Chen, Yaosen Suo, Xinhua Sichuan Univ Coll Comp Sci Chengdu Peoples R China Chengdu Sobey Digital Technol Co Ltd Chengdu Peoples R China Chengdu Univ Informat Technol Sch Comp Sci Chengdu Peoples R China
Recently, some statistic topic modeling approaches, e.g., Latent Dirichlet allocation (LDA), have been widely applied in the field of document classification. However, standard LDA is a completely unsupervised algorit... 详细信息
来源: 评论
An Embedding-Based Topic Model for document classification
收藏 引用
ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING 2021年 第3期20卷 1–13页
作者: Seifollahi, Sattar Piccardi, Massimo Jolfaei, Alireza RMIT Univ Sch Comp Technol 124 La Trobe St Melbourne Vic 3000 Australia Univ Technol Sydney Sch Elect & Data Engn 15 Broadway Ultimo Sydney NSW 2007 Australia Macquarie Univ Dept Comp 16 Macquarie Walk Sydney NSW 2109 Australia
Topic modeling is an unsupervised learning task that discovers the hidden topics in a collection of documents. In turn, the discovered topics can be used for summarizing, organizing, and understanding the documents in... 详细信息
来源: 评论
Sparse multiple instance learning as document classification
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2017年 第3期76卷 4553-4570页
作者: Yan, Shengye Zhu, Xiaodong Liu, Guoqing Wu, Jianxin NUIST CICAEET Sch Informat & Control B DAT Niuliu Rd Nanjing 210044 Peoples R China Youjia Innovat LLC Minieye Shenzhen Peoples R China Nanjing Univ Natl Key Lab Novel Software Technol Nanjing Peoples R China
This work focuses on multiple instance learning (MIL) with sparse positive bags (which we name as sparse MIL). A structural representation is presented to encode both instances and bags. This representation leads to a... 详细信息
来源: 评论
Analyzing the impact of redaction on document classification performance of deep CNN models
收藏 引用
INTERNATIONAL JOURNAL ON document ANALYSIS AND RECOGNITION 2024年 1-13页
作者: Pagel, Johannes Vogl, Stefanie Israel, Laura S. F. Atruvia AG Karl Hammerschmidt Str 44 D-85609 Aschheim Germany Munich Univ Appl Sci Dept Comp Sci & Math Lothstr 34 D-80335 Munich Germany
Many companies are facing growing data archives leading to an increasing focus on the automated classification of documents in corporate processes. Due to data protection guidelines, development with clear data is oft... 详细信息
来源: 评论
Discriminative learning of generative models: large margin multinomial mixture models for document classification
收藏 引用
PATTERN ANALYSIS AND APPLICATIONS 2015年 第3期18卷 535-551页
作者: Jiang, Hui Pan, Zhenyu Hu, Pingzhao York Univ Dept Comp Sci & Engn Toronto ON M3J IP3 Canada
In this paper, a novel discriminative learning method is proposed to estimate generative models for multi-class pattern classification tasks, where a discriminative objective function is formulated with separation mar... 详细信息
来源: 评论
Exploiting the value of class labels on high-dimensional feature spaces: topic models for semi-supervised document classification
收藏 引用
PATTERN ANALYSIS AND APPLICATIONS 2019年 第2期22卷 299-309页
作者: Soleimani, Hossein Miller, David J. Penn State Univ Sch Elect Engn & Comp Sci University Pk PA 16802 USA
We propose a class-based mixture of topic models for classifying documents using both labeled and unlabeled examples (i.e., in a semi-supervised fashion). Most topic models incorporate documents' class labels by g... 详细信息
来源: 评论
Learning with rationales for document classification
收藏 引用
MACHINE LEARNING 2018年 第5期107卷 797-824页
作者: Sharma, Manali Bilgic, Mustafa IIT 10 W 31st St Chicago IL 60616 USA
We present a simple and yet effective approach for document classification to incorporate rationales elicited from annotators into the training of any off-the-shelf classifier. We empirically show on several document ... 详细信息
来源: 评论