咨询与建议

限定检索结果

文献类型

  • 42 篇 期刊文献
  • 32 篇 会议

馆藏范围

  • 74 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 73 篇 工学
    • 71 篇 计算机科学与技术...
    • 12 篇 电气工程
    • 6 篇 软件工程
    • 5 篇 信息与通信工程
    • 5 篇 控制科学与工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 机械工程
    • 1 篇 交通运输工程
    • 1 篇 生物工程
  • 10 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 2 篇 公共管理
    • 2 篇 图书情报与档案管...
  • 8 篇 医学
    • 4 篇 基础医学(可授医学...
    • 3 篇 临床医学
    • 2 篇 公共卫生与预防医...
    • 2 篇 特种医学
    • 1 篇 医学技术(可授医学...
  • 7 篇 理学
    • 4 篇 数学
    • 2 篇 物理学
    • 1 篇 化学
    • 1 篇 生物学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 2 篇 文学
    • 2 篇 外国语言文学

主题

  • 74 篇 document-level r...
  • 10 篇 information extr...
  • 6 篇 natural language...
  • 5 篇 graph neural net...
  • 5 篇 graph convolutio...
  • 4 篇 data mining
  • 4 篇 bert
  • 3 篇 cognition
  • 3 篇 transformers
  • 3 篇 multi-hop reason...
  • 3 篇 evidence retriev...
  • 3 篇 evidence extract...
  • 3 篇 attention mechan...
  • 2 篇 pretrained langu...
  • 2 篇 reinforcement le...
  • 2 篇 graph attention ...
  • 2 篇 task analysis
  • 2 篇 multi-head atten...
  • 2 篇 graph attention ...
  • 2 篇 graph neural net...

机构

  • 4 篇 chongqing univ c...
  • 3 篇 soochow univ sch...
  • 3 篇 nanjing univ sci...
  • 3 篇 nanjing univ chi...
  • 2 篇 chongqing univ k...
  • 2 篇 fudan univ sch c...
  • 2 篇 fudan univ sch c...
  • 2 篇 chongqing ind bi...
  • 2 篇 univ queensland ...
  • 2 篇 dalian univ tech...
  • 2 篇 dalian maritime ...
  • 2 篇 hunan normal uni...
  • 2 篇 northeastern uni...
  • 2 篇 suzhou univ sci ...
  • 2 篇 north china univ...
  • 2 篇 beijing jiaotong...
  • 2 篇 hunan normal uni...
  • 2 篇 state key lab ma...
  • 2 篇 shanghai univ sc...
  • 2 篇 chengdu text col...

作者

  • 4 篇 xue zhongxuan
  • 4 篇 dai qizhu
  • 4 篇 zhong jiang
  • 4 篇 li xue
  • 4 篇 li rongzhen
  • 3 篇 zhang kun
  • 3 篇 yuan changsen
  • 3 篇 sun qi
  • 3 篇 liu an
  • 3 篇 li zhixu
  • 3 篇 zhao lei
  • 3 篇 li xun
  • 3 篇 qu jianfeng
  • 3 篇 lin hongfei
  • 3 篇 xu tiancheng
  • 3 篇 huang kun
  • 3 篇 huang heyan
  • 2 篇 fu qiming
  • 2 篇 chen jianping
  • 2 篇 xu jiajie

语言

  • 74 篇 英文
检索条件"主题词=Document-level relation extraction"
74 条 记 录,以下是41-50 订阅
排序:
Evidence-aware document-level relation extraction  22
Evidence-aware Document-level Relation Extraction
收藏 引用
31st ACM International Conference on Information and Knowledge Management (CIKM)
作者: Xu, Tianyu Hua, Wen Qu, Jianfeng Li, Zhixu Xu, Jiajie Liu, An Zhao, Lei Soochow Univ Sch Comp Sci & Technol Suzhou Peoples R China Univ Queensland Sch Informat Technol & Elect Engn St Lucia Qld Australia Fudan Univ Sch Comp Sci Shanghai Key Lab Data Sci Shanghai Peoples R China
document-level relation extraction (RE) is a promising task aiming at identifying relations of multiple entity pairs in a document. However, in most cases, a relational fact can be expressed enough via a small subset ... 详细信息
来源: 评论
Improving document-level relation extraction via Contextualizing Mention Representations and Weighting Mention Pairs  11
Improving Document-level Relation Extraction via Contextuali...
收藏 引用
11th IEEE International Conference on Knowledge Graph (IEEE ICKG)
作者: Jiang, Ping Mao, Xian-Ling Bian, Binbin Huang, Heyan Beijing Inst Technol Sch Comp Sci Beijing Peoples R China
document-level relation extraction (RE) has attracted considerable attention, because a large number of relational facts are expressed in multiple sentences. Recently, encoder-aggregator based models have become promi... 详细信息
来源: 评论
Multi-relation Identification for Few-Shot document-level relation extraction  1
收藏 引用
32nd International Conference on Artificial Neural Networks (ICANN)
作者: Wang, Dazhuang Wu, Shaojuan Zhang, Xiaowang Feng, Zhiyong Tianjin Univ Coll Intelligence & Comp Tianjin 300350 Peoples R China
document-level relation extraction aims to extract relations between entities mentioned in the given text. Existing approaches characterize relations by concatenating the representation of entities from numerous insta... 详细信息
来源: 评论
Understanding More Knowledge Makes the Transformer Perform Better in document-level relation extraction  15
Understanding More Knowledge Makes the Transformer Perform B...
收藏 引用
15th Asian Conference on Machine Learning (ACML)
作者: Chen, Haotian Chen, Yijiang Zhou, Xiangdong Fudan Univ Sch Comp Sci Shanghai Peoples R China
relation extraction plays a vital role in knowledge graph construction. In contrast with the traditional relation extraction on a single sentence, extracting relations from multiple sentences as a whole will harvest m... 详细信息
来源: 评论
Infusing Dependency Syntax Information into a Transformer Model for document-level relation extraction from Biomedical Literature  8th
Infusing Dependency Syntax Information into a Transformer Mo...
收藏 引用
8th Annual China Conference on Health Information Processing (CHIP)
作者: Yang, Ming Zhang, Yijia Liu, Da Du, Wei Di, Yide Lin, Hongfei Dalian Maritime Univ Sch Informat Sci & Technol Dalian 116024 Liaoning Peoples R China Dalian Univ Technol Sch Comp Sci & Technol Dalian 116023 Lioaoning Peoples R China
In biomedical domain, document-level relation extraction is a challenging task that offers a new and more effective approach for long and complex text mining. Studies have shown that the Transformer models the depende... 详细信息
来源: 评论
Refining ChatGPT for document-level relation extraction: A Multi-dimensional Prompting Approach  20th
Refining ChatGPT for Document-Level Relation Extraction: A M...
收藏 引用
20th International Conference on Intelligent Computing (ICIC)
作者: Zhu, Weiran Wang, Xinzhi Chen, Xue Luo, Xiangfeng Shanghai Univ Sch Comp Engn & Sci Shanghai 200444 Peoples R China
This work explores the efficacy of large language models (LLMs) like ChatGPT and GPT-4 in document-level relation extraction (DocRE). Our work begins with the assessment of the zero-shot capabilities of leading LLMs i... 详细信息
来源: 评论
Pre-classification Supporting Reasoning for document-level relation extraction  10
Pre-classification Supporting Reasoning for Document-level R...
收藏 引用
10th International Joint Conference on Knowledge Graphs (IJCKG)
作者: Zhao, Jiehao Duan, Guiduo Huang, Tianxi Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu Peoples R China Univ Elect Sci & Technol China Sch Comp Sci & Engn Trusted Cloud Comp & Big Data Key Lab Sichuan Pro Chengdu Peoples R China Chengdu Text Coll Dept Fundamental Courses Chengdu Peoples R China
The document-level relation extraction task aims to extract relational triples from a document consisting of multiple sentences. Most previous models focus on modeling the dependency between the entities and neglect t... 详细信息
来源: 评论
NN-Denoising: A Low-Noise Distantly Supervised document-level relation extraction Scheme Using Natural Language Inference and Negative Sampling  32nd
NN-Denoising: A Low-Noise Distantly Supervised Document-Leve...
收藏 引用
32nd International Conference on Artificial Neural Networks (ICANN)
作者: Pan, Mengting Wang, Ye Chen, Zhiyun East China Normal Univ Shanghai 200000 Peoples R China
The task of document-level relation extraction (DocRE) is crucial in the field of natural language processing, as it aims to extract semantic relations between entities in a given document to facilitate deeper compreh... 详细信息
来源: 评论
NA-Aware Machine Reading Comprehension for document-level relation extraction  1
收藏 引用
21st Joint European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD)
作者: Zhang, Zhenyu Yu, Bowen Shu, Xiaobo Liu, Tingwen Chinese Acad Sci Inst Informat Engn Beijing Peoples R China Univ Chinese Acad Sci Sch Cyber Secur Beijing Peoples R China
document-level relation extraction aims to identify semantic relations between target entities from the *** of the existing work roughly treats the document as a long sequence and produces target-agnostic representati... 详细信息
来源: 评论
CRFLOE: Context Region Filter and relation Word Aware for document-level relation extraction  20th
CRFLOE: Context Region Filter and Relation Word Aware for Do...
收藏 引用
20th International Conference on Intelligent Computing (ICIC)
作者: Yang, DanPing Li, XianXian Wu, Hao Zhou, Aoxiang Liu, Peng Guangxi Normal Univ Sch Comp Sci & Engn Guilin 541004 Peoples R China Guangxi Normal Univ Minist Educ Key Lab Educ Blockchain & Intelligent Technol Guilin 541004 Peoples R China
The goal of document-level relation extraction (DocRE) is to identify all entity pair relations from a document in one pass. One challenge faced by DocRE is mining the decisive context of entity pair relations from th... 详细信息
来源: 评论