咨询与建议

限定检索结果

文献类型

  • 2 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 3 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2 篇 工学
    • 1 篇 机械工程
    • 1 篇 计算机科学与技术...
    • 1 篇 软件工程
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...

主题

  • 3 篇 domain-informed ...
  • 2 篇 manufacturing pr...
  • 2 篇 surrogate modell...
  • 2 篇 finite-element-s...
  • 1 篇 failure probabil...
  • 1 篇 energy storage
  • 1 篇 early lifetime p...
  • 1 篇 machine learning
  • 1 篇 gaussian process...
  • 1 篇 experimental sto...
  • 1 篇 distribution ent...

机构

  • 1 篇 institute of veh...
  • 1 篇 karlsruhe
  • 1 篇 institute for pr...
  • 1 篇 energy storage a...
  • 1 篇 applied mathemat...

作者

  • 1 篇 luise kärger
  • 1 篇 noack marcus m.
  • 1 篇 bela h. böhnke
  • 1 篇 clemens zimmerli...
  • 1 篇 böhnke bela h.
  • 1 篇 böhm klemens
  • 1 篇 harris stephen j...
  • 1 篇 zimmerling cleme...
  • 1 篇 eismont aleksand...
  • 1 篇 kärger luise
  • 1 篇 alghalayini mahe...
  • 1 篇 aleksandr eismon...
  • 1 篇 klemens böhm

语言

  • 3 篇 英文
检索条件"主题词=Domain-informed Machine Learning"
3 条 记 录,以下是1-10 订阅
排序:
Early prediction of the failure probability distribution for energy-storage driven by domain-knowledge-informed machine learning
收藏 引用
Cell Reports Physical Science 2025年
作者: Alghalayini, Maher B. Harris, Stephen J. Noack, Marcus M. Energy Storage and Distributed Resources Division Lawrence Berkeley National Laboratory Cyclotron Road Berkeley 94720 CA United States Applied Mathematics and Computational Research Division Lawrence Berkeley National Laboratory Cyclotron Road Berkeley 94720 CA United States
There is a growing focus on new energy sources and storage systems. The challenge with such emerging systems is their need to be warrantied for around 15 years with just a year of early testing. This requires accurate... 详细信息
来源: 评论
How domain Knowledge can Improve machine learning Surrogates for Manufacturing Process Optimization - a Comparative Study  57
How Domain Knowledge can Improve Machine Learning Surrogates...
收藏 引用
18th IFAC Workshop on Time Delay Systems, TDS 2024
作者: Böhnke, Bela H. Eismont, Aleksandr Zimmerling, Clemens Kärger, Luise Böhm, Klemens Karlsruhe Germany Karlsruhe Germany
In various industries, optimizing manufacturing parameters is vital for the efficient production of high-quality products. Traditional methods involve costly production trials and process tuning - particularly when de... 详细信息
来源: 评论
How domain Knowledge can Improve machine learning Surrogates for Manufacturing Process Optimization – a Comparative Study
收藏 引用
Procedia CIRP 2024年 130卷 145-153页
作者: Bela H. Böhnke Aleksandr Eismont Clemens Zimmerling Luise Kärger Klemens Böhm Institute for Program Structures and Data Organization (IPD) Karlsruhe Institute of Technology (KIT) Karlsruhe Germany Institute of Vehicle System Technology - Lightweight Engineering (FAST-LB) Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
In various industries, optimizing manufacturing parameters is vital for the efficient production of high-quality products. Traditional methods involve costly production trials and process tuning – particularly when d... 详细信息
来源: 评论