咨询与建议

限定检索结果

文献类型

  • 155 篇 期刊文献
  • 36 篇 会议

馆藏范围

  • 191 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 176 篇 工学
    • 100 篇 计算机科学与技术...
    • 46 篇 电气工程
    • 24 篇 信息与通信工程
    • 19 篇 石油与天然气工程
    • 14 篇 动力工程及工程热...
    • 14 篇 控制科学与工程
    • 14 篇 软件工程
    • 9 篇 仪器科学与技术
    • 9 篇 材料科学与工程(可...
    • 9 篇 电子科学与技术(可...
    • 7 篇 机械工程
    • 7 篇 环境科学与工程(可...
    • 6 篇 土木工程
    • 5 篇 化学工程与技术
    • 4 篇 力学(可授工学、理...
    • 4 篇 建筑学
    • 4 篇 生物医学工程(可授...
    • 3 篇 水利工程
    • 1 篇 冶金工程
    • 1 篇 地质资源与地质工...
  • 32 篇 理学
    • 15 篇 数学
    • 11 篇 化学
    • 8 篇 生物学
    • 5 篇 物理学
    • 3 篇 统计学(可授理学、...
    • 1 篇 地球物理学
    • 1 篇 地质学
    • 1 篇 系统科学
  • 20 篇 管理学
    • 20 篇 管理科学与工程(可...
  • 2 篇 农学
  • 2 篇 医学

主题

  • 191 篇 dragonfly algori...
  • 24 篇 optimization
  • 12 篇 swarm intelligen...
  • 9 篇 particle swarm o...
  • 8 篇 feature selectio...
  • 7 篇 machine learning
  • 7 篇 whale optimizati...
  • 6 篇 multi-objective ...
  • 5 篇 classification
  • 5 篇 genetic algorith...
  • 4 篇 differential evo...
  • 4 篇 evolutionary alg...
  • 4 篇 global optimizat...
  • 4 篇 extreme learning...
  • 4 篇 grey wolf optimi...
  • 4 篇 metaheuristic al...
  • 3 篇 benchmark functi...
  • 3 篇 meta-heuristic
  • 3 篇 clustering
  • 3 篇 optimal power fl...

机构

  • 3 篇 chinese acad sci...
  • 3 篇 yonsei univ yons...
  • 3 篇 jilin univ coll ...
  • 2 篇 univ canterbury ...
  • 2 篇 islamic azad uni...
  • 2 篇 vit univ sch ele...
  • 2 篇 northeastern uni...
  • 2 篇 lovely profess u...
  • 2 篇 duy tan univ ins...
  • 2 篇 natl inst techno...
  • 2 篇 natl inst techno...
  • 2 篇 jilin univ key l...
  • 2 篇 jadavpur univ de...
  • 2 篇 northeast forest...
  • 2 篇 natl inst techno...
  • 2 篇 islamic azad uni...
  • 2 篇 princess sumaya ...
  • 2 篇 guangxi univ nat...
  • 2 篇 amman arab univ ...
  • 2 篇 shandong univ sc...

作者

  • 5 篇 mirjalili seyeda...
  • 5 篇 hentabli mohamed
  • 3 篇 kumar ashish
  • 3 篇 kalita kanak
  • 3 篇 saini monika
  • 3 篇 pham vu hong son
  • 2 篇 remini hocine
  • 2 篇 li li
  • 2 篇 ghadai ranjan ku...
  • 2 篇 hassanien aboul ...
  • 2 篇 yang zhile
  • 2 篇 dahmoune farid
  • 2 篇 safi-esfahani fa...
  • 2 篇 emambocus bibi a...
  • 2 篇 watson neville r...
  • 2 篇 das diptanu
  • 2 篇 jasser muhammed ...
  • 2 篇 premrudeepreecha...
  • 2 篇 al khatib sultan...
  • 2 篇 bhattacharya ani...

语言

  • 182 篇 英文
  • 7 篇 其他
  • 1 篇 德文
  • 1 篇 土耳其文
  • 1 篇 中文
检索条件"主题词=Dragonfly algorithm"
191 条 记 录,以下是51-60 订阅
排序:
Hybridized dragonfly and Jaya algorithm for optimal sensor node location identification in mobile wireless sensor networks
收藏 引用
JOURNAL OF SUPERCOMPUTING 2023年 第15期79卷 16940-16962页
作者: Khedr, Ahmed M. Rani, S. Sheeja Saad, Mohamed Univ Sharjah Dept Comp Sci Sharjah 27272 U Arab Emirates Univ Sharjah Dept Comp Engn Sharjah 27272 U Arab Emirates Zagazig Univ Math Dept Zagazig Egypt
A wireless sensor network (WSN) consists of an extensive number of low-power sensor nodes to gather information from their environment and monitor physical activities. This makes node localization a crucial aspect in ... 详细信息
来源: 评论
Training of the feed forward artificial neural networks using dragonfly algorithm
收藏 引用
APPLIED SOFT COMPUTING 2022年 124卷
作者: Gulcu, Saban Necmettin Erbakan Univ Comp Engn Dept Konya Turkey
One of the most important parts of an artificial neural network (ANN) which affects performance is training algorithms. Training algorithms optimize the weights and biases of the ANN according to the inputs-outputs pa... 详细信息
来源: 评论
A Hybrid dragonfly algorithm for Efficiency Optimization of Induction Motors
收藏 引用
SENSORS 2022年 第7期22卷 2594页
作者: Shukla, Niraj Kumar Srivastava, Rajeev Mirjalili, Seyedali Shambhunath Inst Engn & Technol Dept Elect Engn Prayagraj 211015 India Univ Allahabad JK Inst Appl Phys & Technol Dept Elect & Commun Prayagraj 211002 India Torrens Univ Australia Ctr Artificial Intelligence Res & Optimizat Brisbane Qld 4006 Australia Yonsei Univ Yonsei Frontier Lab Seoul 03722 South Korea
Induction motors tend to have better efficiency on rated conditions, but at partial load conditions, when these motors operate on rated flux, they exhibit lower efficiency. In such conditions, when these motors operat... 详细信息
来源: 评论
Dynamic opposite learning enhanced dragonfly algorithm for solving large-scale flexible job shop scheduling problem
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2022年 第0期238卷 107815-107815页
作者: Yang, Dongsheng Wu, Mingliang Li, Di Xu, Yunlang Zhou, Xianyu Yang, Zhile Northeastern Univ Intelligent Elect Sci & Technol Res Inst Shenyang Peoples R China South China Univ Technol Sch Mech & Automot Engn Guangzhou Peoples R China Fudan Univ Sch Microelect State Key Lab ASIC & Syst Shanghai Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen Peoples R China
Flexible job shop scheduling problem (FJSP) has attracted many research interests, in particular for meta-heuristic algorithm (MA) developers due to the superior optimization performance. dragonfly algorithm (DA) is o... 详细信息
来源: 评论
Mathematical modeling and dragonfly algorithm for optimizing sustainable agritourism supply chains
Journal of Engineering Research (Kuwait)
收藏 引用
Journal of Engineering Research (Kuwait) 2024年
作者: Zhang, Gongwang Chen, Chun-Nan Shokouhifar, Mohammad Goli, Alireza Hangzhou Administrative College Zhejiang Hangzhou 310024 China College of Management Chang Jung Christian University Tainan 711301 Taiwan Department of Electrical and Computer Engineering Shahid Beheshti University Tehran *** Iran Department of Industrial Engineering and Future Studies Faculty of Engineering University of Isfahan Iran
The management of agritourism supply chains plays a pivotal role in promoting sustainable rural development and cultivating economic growth within agricultural communities. The study devises a comprehensive methodolog... 详细信息
来源: 评论
BMDA: applying biogeography-based optimization algorithm and Mexican hat wavelet to improve dragonfly algorithm
收藏 引用
SOFT COMPUTING 2020年 第21期24卷 15979-16004页
作者: Shirani, Mohammad Reza Safi-Esfahani, Faramarz Islamic Azad Univ Fac Comp Engn Najafabad Branch Najafabad Iran Islamic Azad Univ Big Data Res Ctr Najafabad Branch Najafabad Iran
One of the methods for solving optimization problems is applying metaheuristic algorithms that find near to optimal solutions. dragonfly algorithm is one of the metaheuristic algorithms which search problem space by t... 详细信息
来源: 评论
IBDA: Improved Binary dragonfly algorithm With Evolutionary Population Dynamics and Adaptive Crossover for Feature Selection
收藏 引用
IEEE ACCESS 2020年 8卷 108032-108051页
作者: Li, Jiahui Kang, Hui Sun, Geng Feng, Tie Li, Wenqi Zhang, Wei Ji, Bai Jilin Univ Coll Comp Sci & Technol Changchun 130012 Peoples R China Jilin Univ Key Lab Symbol Computat & Knowledge Engn Minist Educ Changchun 130012 Peoples R China Jilin Univ Hosp 1 Dept Hepatobiliary & Pancreat Surg Changchun 130021 Peoples R China
Feature selection is an effective method to eliminate irrelevant, redundant and noisy features, which improves the performance of classification and reduces the computational burden in machine learning. In this paper,... 详细信息
来源: 评论
The importance of reconfiguration of the distribution network to achieve minimization of energy losses using the dragonfly algorithm
收藏 引用
e-Prime - Advances in Electrical Engineering, Electronics and Energy 2023年 5卷
作者: Rahmati, Katayun Taherinasab, Sina Department of Electrical and Computer Engineering Islamic Azad University Gorgan Iran Department of Electrical and Computer Engineering Institute of Higher Education Fakhruddin As'ad Gorgani Gorgan Iran
In this article, a method for reconfiguring the distribution network with the presence of production sources to minimize energy losses is presented. Also, besides the reconfiguration issue, the Super distribution tap ... 详细信息
来源: 评论
An improved opposition based learning firefly algorithm with dragonfly algorithm for solving continuous optimization problems
收藏 引用
INTELLIGENT DATA ANALYSIS 2020年 第2期24卷 309-338页
作者: Abedi, Mehdi Gharehchopogh, Farhad Soleimanian Islamic Azad Univ Dept Comp Engn Urmia Branch Orumiyeh Iran
Nowadays, the existence of continuous optimization problems has led researchers to come up with a variety of methods to solve continues optimization problems. The metaheuristic algorithms are one of the most popular a... 详细信息
来源: 评论
A Hybrid Improved dragonfly algorithm for Feature Selection
收藏 引用
IEEE ACCESS 2020年 8卷 155619-155629页
作者: Cui, Xueting Li, Ying Fan, Jiahao Wang, Tan Zheng, Yuefeng Jilin Univ Coll Comp Sci & Technol Changchun 130012 Peoples R China Jilin Univ Key Lab Symbol Computat & Knowledge Engn Minist Educ Changchun 130012 Peoples R China Space Technol Jilin Co Ltd Changchun 130000 Peoples R China Jilin Normal Univ Comp Coll Siping 136000 Peoples R China
Feature selection, which eliminates irrelevant and redundant features, is one of the most efficient classification methods. However, searching for an optimal subset from the original set is still a challenging problem... 详细信息
来源: 评论