咨询与建议

限定检索结果

文献类型

  • 239 篇 期刊文献
  • 159 篇 会议
  • 1 册 图书
  • 1 篇 学位论文

馆藏范围

  • 400 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 374 篇 工学
    • 312 篇 计算机科学与技术...
    • 109 篇 电气工程
    • 36 篇 软件工程
    • 35 篇 信息与通信工程
    • 23 篇 控制科学与工程
    • 10 篇 仪器科学与技术
    • 9 篇 交通运输工程
    • 7 篇 生物医学工程(可授...
    • 6 篇 测绘科学与技术
    • 3 篇 电子科学与技术(可...
    • 3 篇 环境科学与工程(可...
    • 3 篇 安全科学与工程
    • 2 篇 机械工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 建筑学
    • 2 篇 土木工程
  • 63 篇 理学
    • 32 篇 数学
    • 13 篇 物理学
    • 8 篇 生物学
    • 5 篇 统计学(可授理学、...
    • 4 篇 地理学
    • 4 篇 地球物理学
    • 2 篇 系统科学
  • 40 篇 管理学
    • 36 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
  • 22 篇 医学
    • 16 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 5 篇 特种医学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 法学
  • 1 篇 文学

主题

  • 400 篇 dynamic graph
  • 21 篇 graph neural net...
  • 20 篇 graph neural net...
  • 18 篇 anomaly detectio...
  • 16 篇 graph convolutio...
  • 15 篇 deep learning
  • 13 篇 representation l...
  • 13 篇 task analysis
  • 12 篇 graph representa...
  • 12 篇 heuristic algori...
  • 10 篇 social networkin...
  • 9 篇 temporal graph
  • 9 篇 graph theory
  • 9 篇 correlation
  • 8 篇 convolution
  • 8 篇 predictive model...
  • 8 篇 feature extracti...
  • 7 篇 indexes
  • 7 篇 contrastive lear...
  • 7 篇 data models

机构

  • 5 篇 hong kong univ s...
  • 5 篇 shanghai jiao to...
  • 5 篇 hunan univ coll ...
  • 4 篇 chinese univ hon...
  • 4 篇 beihang univ sta...
  • 4 篇 univ chinese aca...
  • 4 篇 carnegie mellon ...
  • 4 篇 cent south univ ...
  • 4 篇 shenzhen univ co...
  • 4 篇 beihang univ sch...
  • 3 篇 peking univ peop...
  • 3 篇 med univ vienna ...
  • 3 篇 chinese acad sci...
  • 3 篇 wuhan univ sch c...
  • 3 篇 shandong huayu u...
  • 3 篇 tianjin renai co...
  • 3 篇 huazhong univ sc...
  • 3 篇 northeastern uni...
  • 3 篇 univ illinois il...
  • 3 篇 shanghai univ sc...

作者

  • 8 篇 qin lu
  • 7 篇 bertelle cyrille
  • 6 篇 yu jeffrey xu
  • 6 篇 zhang wenjie
  • 6 篇 dutot antoine
  • 5 篇 meyer-baese anke
  • 5 篇 du bowen
  • 5 篇 chen lei
  • 5 篇 zhang ying
  • 5 篇 sun leilei
  • 5 篇 lin xuemin
  • 4 篇 tahmassebi amirh...
  • 4 篇 li he
  • 4 篇 wu yanhong
  • 4 篇 yu ge
  • 4 篇 demare thibaut
  • 4 篇 zhang fan
  • 4 篇 pinker-domenig k...
  • 4 篇 yuan hang
  • 3 篇 huang jianbin

语言

  • 394 篇 英文
  • 5 篇 其他
  • 1 篇 中文
检索条件"主题词=Dynamic Graph"
400 条 记 录,以下是1-10 订阅
排序:
dynamic graph-based bilateral recurrent imputation network for multivariate time series
收藏 引用
NEURAL NETWORKS 2025年 186卷 107298页
作者: Lai, Xiaochen Zhang, Zheng Zhang, Liyong Lu, Wei Li, Zhuohan Dalian Univ Technol Sch Software Dalian 116600 Peoples R China Dalian Univ Technol Sch Control Sci & Engn Dalian 116024 Peoples R China
Multivariate time series imputation using graph neural networks (GNNs) has gained significant attention, where the variables and their correlations are depicted as the graph nodes and edges, offering a structured way ... 详细信息
来源: 评论
dynamic graph based weakly supervised deep hashing for whole slide image classification and retrieval
收藏 引用
MEDICAL IMAGE ANALYSIS 2025年 101卷 103468页
作者: Jin, Haochen Shen, Junyi Cui, Lei Shi, Xiaoshuang Li, Kang Zhu, Xiaofeng Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu 611731 Peoples R China Sichuan Univ West China Hosp Dept Gen Surg Div Liver Surg Chengdu 610044 Peoples R China Northwest Univ China Dept Comp Sci & Technol Xian 710075 Peoples R China Sichuan Univ West China Med Ctr Chengdu 610041 Peoples R China
Recently, a multi-scale representation attention based deep multiple instance learning method has proposed to directly extract patch-level image features from gigapixel whole slide images (WSIs), and achieved promisin... 详细信息
来源: 评论
dynamic graph Convolutional Recurrent Network With Spatiotemporal Category Information Embedding for Traffic Flow Prediction
收藏 引用
IEEE INTERNET OF THINGS JOURNAL 2024年 第24期11卷 39473-39486页
作者: Zhu, Guodong Niu, Yunyun Du, Songzhi Wang, Pengcheng China Univ Geosci Sch Informat Engn Beijing 100083 Peoples R China
Traffic flow prediction is a challenging spatiotemporal prediction task due to its spatiotemporal dynamics and uncertainty. In recent years, graph convolutional neural networks (GCNs) have been applied to traffic flow... 详细信息
来源: 评论
dynamic graph Representation Learning via Coupling-Process Model
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024年 第9期35卷 12383-12395页
作者: Duan, Pingtao Zhou, Chuan Liu, Yuting Beijing Jiaotong Univ Sch Math & Stat Beijing 100044 Peoples R China Chinese Acad Sci Acad Math & Syst Sci Beijing 100190 Peoples R China
Representation learning based on dynamic graphs has received a lot of attention in recent years due to its wide range of application scenarios. Although many discrete or continuous dynamic graph representation learnin... 详细信息
来源: 评论
dynamic graph Temporal-Frequency Dual-Channel Network for Multi-Band Spectrum Prediction
收藏 引用
IEEE COMMUNICATIONS LETTERS 2024年 第12期28卷 2940-2944页
作者: Guo, Xing Xu, Yitao Sun, Jiachen Ding, Guoru Lin, Fandi Song, Yehui Army Engn Univ Coll Commun Engn Nanjing 210007 Peoples R China
Spectrum prediction is crucial in cognitive radio networks, and previous studies have introduced various spectrum modeling methods. However, these methods typically only capture static patterns from historical spectru... 详细信息
来源: 评论
Recognition of carrier-based aircraft flight deck operations based on dynamic graph
收藏 引用
Chinese Journal of Aeronautics 2025年 第3期38卷 474-490页
作者: Xingyu GUO Jiaxin LI Hua WANG Junnan LIU Yafei LI Mingliang XU School of Computer Science and Artificial Intelligence Zhengzhou UniversityZhengzhou 450001China Engineering Research Center of Intelligent Swarm Systems Ministry of EducationZhengzhou 450001China National Supercomputing Center in Zhengzhou Zhengzhou 450001China School of Geo-Science&Technology Zhengzhou UniversityZhengzhou 450001China
Accurate recognition of flight deck operations for carrier-based aircraft, based on operation trajectories, is critical for optimizing carrier-based aircraft performance. This recognition involves understanding short-... 详细信息
来源: 评论
dynamic graph-Based Adaptive Learning for Online Industrial Soft Sensor With Mutable Spatial Coupling Relations
收藏 引用
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 2023年 第9期70卷 9614-9622页
作者: Zhu, Kun Zhao, Chunhui Zhejiang Univ Coll Control Sci & Engn Hangzhou 310027 Peoples R China Zhejiang Univ NGIC Platform Hangzhou 310027 Peoples R China
The accurate online soft sensor in complex industrial processes remains challenging because underlying spatial coupling relations among process variables have not been effectively mined and exploited. Recently, some d... 详细信息
来源: 评论
dynamic graph Embedding via Self-Attention in the Lorentz Space  27
Dynamic Graph Embedding via Self-Attention in the Lorentz Sp...
收藏 引用
27th International Conference on Computer Supported Cooperative Work in Design (CSCWD)
作者: Duan, Dingyang Zha, Daren Lie, Zeyi Chen, Yu Chinese Acad Sci Inst Informat Engn Beijing Peoples R China Univ Chinese Acad Sci Sch Cyber Secur Beijing Peoples R China Beijing Digital Educ Ctr Beijing Peoples R China
graph Neural Networks (GNNs) are popular for learning node representations in complex graph structures. Traditional methods use Euclidean space but struggle to capture hierarchical structures in real-world graphs. Bes... 详细信息
来源: 评论
Performance optimization of heterogeneous computing for large-scale dynamic graph data
收藏 引用
JOURNAL OF SUPERCOMPUTING 2025年 第1期81卷 1-26页
作者: Wang, Haifeng Guo, Wenkang Zhang, Ming Linyi Univ Sch Informat Sci & Engn Linyi 276002 Shandong Peoples R China Linyi Univ Res Inst Shandong Prov Network Key Lab Linyi 276002 Shandong Peoples R China
The performance of machines has not been fully exploited when processing large-scale dynamic graph in heterogeneous GPU clusters. To improve the performance of graph computing, a distributed heterogeneous engine (DHE)... 详细信息
来源: 评论
Gravel Particle Shape Classification from Half-Particle Point Clouds using a dynamic graph Edge Convolution Neural Network
收藏 引用
COMPUTERS AND GEOTECHNICS 2025年 179卷
作者: Xi, Junbo Gao, Lin Zheng, Junxing Wang, Dong Wang, Gezhou Guan, Zhenchang Zheng, Jiajia Huazhong Univ Sci & Technol Sch Civil & Hydraul Engn Wuhan 430074 Hubei Peoples R China Minist Water Resources Changjiang River Sci Res Inst Key Lab Geotech Mech & Engn Wuhan 430010 Peoples R China Fuzhou Univ Coll Civil Engn Fuzhou 350108 Fujian Peoples R China China Rd & Bridge Corp Beijing 10001 Peoples R China
Obtaining the three-dimensional (3D) shape of gravel particles is essential for calculating their roundness and sphericity. However, cost-effective, and rapid non-penetrating 3D imaging technologies, such as 3D laser ... 详细信息
来源: 评论