咨询与建议

限定检索结果

文献类型

  • 141 篇 期刊文献
  • 44 篇 会议

馆藏范围

  • 185 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 181 篇 工学
    • 150 篇 计算机科学与技术...
    • 35 篇 电气工程
    • 18 篇 控制科学与工程
    • 9 篇 信息与通信工程
    • 8 篇 化学工程与技术
    • 7 篇 石油与天然气工程
    • 7 篇 软件工程
    • 6 篇 动力工程及工程热...
    • 4 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 交通运输工程
    • 2 篇 冶金工程
    • 2 篇 土木工程
    • 2 篇 船舶与海洋工程
    • 1 篇 光学工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 航空宇航科学与技...
    • 1 篇 环境科学与工程(可...
    • 1 篇 食品科学与工程(可...
  • 47 篇 管理学
    • 47 篇 管理科学与工程(可...
  • 19 篇 理学
    • 10 篇 生物学
    • 6 篇 数学
    • 2 篇 物理学
    • 2 篇 化学
    • 1 篇 海洋科学
    • 1 篇 统计学(可授理学、...
  • 2 篇 法学
    • 2 篇 法学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 185 篇 dynamic multi-ob...
  • 33 篇 evolutionary alg...
  • 22 篇 prediction
  • 22 篇 evolutionary alg...
  • 19 篇 transfer learnin...
  • 7 篇 decomposition
  • 6 篇 optimization
  • 5 篇 memory
  • 4 篇 dynamic optimiza...
  • 4 篇 diversity
  • 4 篇 prediction strat...
  • 4 篇 particle swarm o...
  • 4 篇 local search
  • 4 篇 evolutionary com...
  • 3 篇 simulation
  • 3 篇 high speed railw...
  • 3 篇 support vector m...
  • 3 篇 constrained opti...
  • 3 篇 convergence
  • 3 篇 differential evo...

机构

  • 12 篇 de montfort univ...
  • 7 篇 huaibei normal u...
  • 7 篇 oklahoma state u...
  • 6 篇 huaibei normal u...
  • 5 篇 yanshan univ key...
  • 5 篇 east china univ ...
  • 4 篇 xiangtan univ ke...
  • 4 篇 beijing univ tec...
  • 4 篇 xiangtan univ sc...
  • 4 篇 hengyang normal ...
  • 4 篇 city univ hong k...
  • 4 篇 xiamen univ sch ...
  • 3 篇 tiangong univ sc...
  • 3 篇 hunan univ sci &...
  • 3 篇 southern univ sc...
  • 3 篇 hefei comprehens...
  • 3 篇 nanjing univ sta...
  • 3 篇 zhengzhou univ l...
  • 3 篇 anhui engn res c...
  • 3 篇 univ surrey dept...

作者

  • 18 篇 yang shengxiang
  • 13 篇 zou juan
  • 13 篇 zheng jinhua
  • 11 篇 hu yaru
  • 9 篇 chen debao
  • 9 篇 ou junwei
  • 7 篇 sun hao
  • 7 篇 yen gary g.
  • 7 篇 hu ziyu
  • 6 篇 wei lixin
  • 6 篇 ruan gan
  • 6 篇 liu ruochen
  • 6 篇 zou feng
  • 6 篇 ma yongjie
  • 6 篇 zhang xi
  • 5 篇 jiang min
  • 5 篇 yao xin
  • 5 篇 jin yaochu
  • 5 篇 ge fangzhen
  • 4 篇 gong dunwei

语言

  • 179 篇 英文
  • 5 篇 其他
  • 1 篇 中文
检索条件"主题词=Dynamic Multi-Objective Optimization"
185 条 记 录,以下是51-60 订阅
排序:
dynamic multi-objective optimization for mixed traffic flow based on partial least squares prediction model
收藏 引用
JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY 2019年 第13期13卷 -页
作者: Chen, Juan Xue, Zhengxuan Han, Dongxiao Shanghai Univ SHU UTS SILC Business Sch Shanghai 201899 Peoples R China
A dynamic multi-objective genetic algorithm based on partial least squares prediction model (DNSGA-II-PLS) is presented in this paper to solve the mix traffic flow multi-objective timing optimization problem with time... 详细信息
来源: 评论
An environment-driven hybrid evolutionary algorithm for dynamic multi-objective optimization problems
收藏 引用
COMPLEX & INTELLIGENT SYSTEMS 2023年 第1期9卷 659-675页
作者: Chen, Meirong Guo, Yinan Jin, Yaochu Yang, Shengxiang Gong, Dunwei Yu, Zekuan China Univ Min & Technol Sch Math Xuzhou 221116 Jiangsu Peoples R China China Univ Min & Technol Sch Informat & Elect Engn Xuzhou 221116 Jiangsu Peoples R China China Univ Min & Technol Beijing Sch Mech Elect & Informat Engn Beijing 100083 Peoples R China Univ Surrey Dept Comp Sci Guildford GU2 7XH Surrey England De Montfort Univ Sch Comp Sci & Informat Leicester LE1 9BH Leics England Fudan Univ Huashan Hosp Dept Radiol Shanghai 200040 Peoples R China
In dynamic multi-objective optimization problems, the environmental parameters may change over time, which makes the Pareto fronts shifting. To address the issue, a common idea is to track the moving Pareto front once... 详细信息
来源: 评论
Evolutionary dynamic multi-objective optimization algorithm based on Borda count method
收藏 引用
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS 2019年 第8期10卷 1931-1959页
作者: Orouskhani, Maysam Teshnehlab, Mohammad Nekoui, Mohammad Ali Islamic Azad Univ Sci & Res Branch Dept Comp Engn Tehran Iran KN Toosi Univ Dept Elect Engn Ind Control Ctr Excellence Tehran Iran
In this paper, a novel dynamic multi-objective optimization algorithm is introduced. The proposed method is composed of three parts: change detection, response to change, and optimization process. The first step is to... 详细信息
来源: 评论
Knowledge hierarchy-based dynamic multi-objective optimization method for AUV path planning in cooperative search missions
收藏 引用
OCEAN ENGINEERING 2024年 第Part3期312卷
作者: Wang, Yinhuan Liu, Kaizhou Geng, Lingbo Zhang, Shaoze Chinese Acad Sci Shenyang Inst Automat State Key Lab Robot Shenyang 110016 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China
This study focuses on path planning for Autonomous Underwater Vehicles (AUVs) in underwater cooperative search missions. The complexities of the ocean environment, the uncertainty of target movements, and limited comm... 详细信息
来源: 评论
A special point-based transfer component analysis for dynamic multi-objective optimization
收藏 引用
COMPLEX & INTELLIGENT SYSTEMS 2023年 第2期9卷 1229-1245页
作者: Liu, Ruochen Li, Nanxi Peng, Luyao Wu, Kai Xidian Univ Key Lab Intelligent Percept & Image Understanding Minist Educ Int Ctr Intelligent Percept & Computat Xian 710071 Peoples R China
To solve dynamic multi-objective optimization problems better, the key is to adapt quickly to environmental changes and track the possible changing optimal solutions in time. In this paper, we propose a special point-... 详细信息
来源: 评论
Leveraging Evolutionary Algorithms for dynamic multi-objective optimization Scheduling of multi-tenant Smart Home Appliances
Leveraging Evolutionary Algorithms for Dynamic Multi-Objecti...
收藏 引用
IEEE Congress on Evolutionary Computation (CEC) held as part of IEEE World Congress on Computational Intelligence (IEEE WCCI)
作者: Trabelsi, Walid Azzouz, Radhia Bechikh, Slim Ben Said, Lamjed IBM Corp Cork Ireland Univ Tunis SOIE Lab Tunis Tunisia
In parallel to optimizing energy consumption within houses, users' comfort is increasingly considered as an essential success criterion for automated smart home solutions. From the user perspective, balancing trad... 详细信息
来源: 评论
An Adaptive Knowledge Transfer Strategy for Evolutionary dynamic multi-objective optimization  18th
An Adaptive Knowledge Transfer Strategy for Evolutionary Dyn...
收藏 引用
18th International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)
作者: Zhao, Donghui Lu, Xiaofen Tang, Ke Southern Univ Sci & Technol Dept Comp Sci & Engn Guangdong Prov Key Lab Brain Inspired Intelligent Shenzhen 518055 Peoples R China Southern Univ Sci & Technol Res Inst Trustworthy Autonomous Syst Shenzhen 518055 Peoples R China
dynamic multi-objective optimization problems (DMOPs) are optimization problems involve multiple conflicting objectives, and these objectives change over time. The challenge in solving DMOPs is how to quickly track th... 详细信息
来源: 评论
Computational Study on Effectiveness of Knowledge Transfer in dynamic multi-objective optimization
Computational Study on Effectiveness of Knowledge Transfer i...
收藏 引用
IEEE Congress on Evolutionary Computation (CEC) as part of the IEEE World Congress on Computational Intelligence (IEEE WCCI)
作者: Ruan, Gan Minku, Leandro L. Menzel, Stefan Sendhoff, Bernhard Yao, Xin Univ Birmingham CERCIA Sch Comp Sci Birmingham W Midlands England Honda Res Inst Europe GmbH D-63073 Offenbach Germany Southern Univ Sci & Technol Dept Comp Sci & Engn Shenzhen Peoples R China
Transfer learning has been used for solving multiple optimization and dynamic multi-objective optimization problems, since transfer learning is believed to be able to transfer useful information from one problem insta... 详细信息
来源: 评论
Solving dynamic multi-objective optimization Problems Using Cultural Algorithm based on Decomposition  3
Solving Dynamic Multi-Objective Optimization Problems Using ...
收藏 引用
3rd International Conference on Vision, Image and Signal Processing (ICVISP)
作者: Ravichandran, Ramya Kobti, Ziad Univ Windsor Sch Comp Sci Windsor ON Canada
The importance of dynamic multi-objective optimization problems (DMOPs) is on the rise, in complex systems. DMOPs have several objective functions and constraints that vary over time to be considered simultaneously. A... 详细信息
来源: 评论
An Iterative Machine Learning Approach to Informative Performance Reporting in dynamic multi-objective optimization
An Iterative Machine Learning Approach to Informative Perfor...
收藏 引用
Genetic and Evolutionary Computation Conference (GECCO)
作者: Herring, Daniel Kirley, Michael Yao, Xin Univ Melbourne Melbourne Vic Australia Univ Birmingham Birmingham W Midlands England
dynamic multi-objective optimization problems (DMOPs) can represent formulations of complex realistic scenarios in industrial, logistics and energy domains. Consistent and comparable testing on DMOP benchmarks has see... 详细信息
来源: 评论