咨询与建议

限定检索结果

文献类型

  • 141 篇 期刊文献
  • 44 篇 会议

馆藏范围

  • 185 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 181 篇 工学
    • 150 篇 计算机科学与技术...
    • 35 篇 电气工程
    • 18 篇 控制科学与工程
    • 9 篇 信息与通信工程
    • 8 篇 化学工程与技术
    • 7 篇 石油与天然气工程
    • 7 篇 软件工程
    • 6 篇 动力工程及工程热...
    • 4 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 交通运输工程
    • 2 篇 冶金工程
    • 2 篇 土木工程
    • 2 篇 船舶与海洋工程
    • 1 篇 光学工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 航空宇航科学与技...
    • 1 篇 环境科学与工程(可...
    • 1 篇 食品科学与工程(可...
  • 47 篇 管理学
    • 47 篇 管理科学与工程(可...
  • 19 篇 理学
    • 10 篇 生物学
    • 6 篇 数学
    • 2 篇 物理学
    • 2 篇 化学
    • 1 篇 海洋科学
    • 1 篇 统计学(可授理学、...
  • 2 篇 法学
    • 2 篇 法学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 185 篇 dynamic multi-ob...
  • 33 篇 evolutionary alg...
  • 22 篇 prediction
  • 22 篇 evolutionary alg...
  • 19 篇 transfer learnin...
  • 7 篇 decomposition
  • 6 篇 optimization
  • 5 篇 memory
  • 4 篇 dynamic optimiza...
  • 4 篇 diversity
  • 4 篇 prediction strat...
  • 4 篇 particle swarm o...
  • 4 篇 local search
  • 4 篇 evolutionary com...
  • 3 篇 simulation
  • 3 篇 high speed railw...
  • 3 篇 support vector m...
  • 3 篇 constrained opti...
  • 3 篇 convergence
  • 3 篇 differential evo...

机构

  • 12 篇 de montfort univ...
  • 7 篇 huaibei normal u...
  • 7 篇 oklahoma state u...
  • 6 篇 huaibei normal u...
  • 5 篇 yanshan univ key...
  • 5 篇 east china univ ...
  • 4 篇 xiangtan univ ke...
  • 4 篇 beijing univ tec...
  • 4 篇 xiangtan univ sc...
  • 4 篇 hengyang normal ...
  • 4 篇 city univ hong k...
  • 4 篇 xiamen univ sch ...
  • 3 篇 tiangong univ sc...
  • 3 篇 hunan univ sci &...
  • 3 篇 southern univ sc...
  • 3 篇 hefei comprehens...
  • 3 篇 nanjing univ sta...
  • 3 篇 zhengzhou univ l...
  • 3 篇 anhui engn res c...
  • 3 篇 univ surrey dept...

作者

  • 18 篇 yang shengxiang
  • 13 篇 zou juan
  • 13 篇 zheng jinhua
  • 11 篇 hu yaru
  • 9 篇 chen debao
  • 9 篇 ou junwei
  • 7 篇 sun hao
  • 7 篇 yen gary g.
  • 7 篇 hu ziyu
  • 6 篇 wei lixin
  • 6 篇 ruan gan
  • 6 篇 liu ruochen
  • 6 篇 zou feng
  • 6 篇 ma yongjie
  • 6 篇 zhang xi
  • 5 篇 jiang min
  • 5 篇 yao xin
  • 5 篇 jin yaochu
  • 5 篇 ge fangzhen
  • 4 篇 gong dunwei

语言

  • 179 篇 英文
  • 5 篇 其他
  • 1 篇 中文
检索条件"主题词=Dynamic Multi-objective Optimization"
185 条 记 录,以下是21-30 订阅
排序:
dynamic multi-objective optimization Framework With Interactive Evolution for Sequential Recommendation
收藏 引用
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 2023年 第4期7卷 1228-1241页
作者: Zhou, Wei Liu, Yong Li, Min Wang, Yu Shen, Zhiqi Feng, Liang Zhu, Zexuan Shenzhen Univ Coll Comp Sci & Software Engn Natl Engn Lab Big Data Syst Comp Technol Shenzhen 518060 Peoples R China Nanyang Technol Univ Joint NTU UBC Res Ctr Excellence Act Living Elderl Singapore 639798 Singapore Jing Dong Retail Dept User Growth & Operat Beijing 100176 Peoples R China Nanyang Technol Univ Sch Comp Sci & Engn Singapore 639798 Singapore Chongqing Univ Coll Comp Sci Chongqing 400044 Peoples R China
In contrast to traditional recommender systems which usually pay attention to users' general and long-term preferences, sequential recommendation (SR) can model users' dynamic intents based on their behaviour ... 详细信息
来源: 评论
dynamic multi-objective optimization based on membrane computing for control of time-varying unstable plants
收藏 引用
INFORMATION SCIENCES 2011年 第11期181卷 2370-2391页
作者: Huang, Liang Suh, Il Hong Abraham, Ajith Hanyang Univ Intelligence & Commun Robots Lab Dept Comp Sci & Engn Coll Engn Seoul 133791 South Korea SNIRE Machine Intelligence Res Labs MIR Labs Auburn WA 98071 USA
dynamic multi-objective optimization is a current hot topic. This paper discusses several issues that has not been reported in the static multi-objective optimization literature such as the loss of non-dominated solut... 详细信息
来源: 评论
dynamic multi-objective optimization algorithm based on prediction strategy
收藏 引用
JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY 2018年 第2期21卷 411-415页
作者: Li, Er-Chao Ma, Xiang-Qi Lanzhou Univ Technol Fac Elect Engn & Informat Engn Lanzhou 730000 Gansu Peoples R China
In order to effectively solve the dynamic multi-objective optimization problem, a new dynamic multi-objective optimization algorithm based on prediction strategy is provided in this *** algorithm detects changes in th... 详细信息
来源: 评论
dynamic multi-objective optimization of Chemical Processes Using Modified BareBones MOPSO Algorithm
收藏 引用
Journal of Donghua University(English Edition) 2014年 第2期31卷 184-189页
作者: 杜文莉 王珊珊 陈旭 钱锋 Key Laboratory of Advanced Control and Optimization for Chemical Processes Ministry of EducationEast China University of Science and Technology
dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is pro... 详细信息
来源: 评论
dynamic multi-objective optimization Based on an Improved Lion Group Algorithm  7
Dynamic Multi-objective Optimization Based on an Improved Li...
收藏 引用
7th International Conference on Artificial Intelligence and Big Data (ICAIBD)
作者: Wang, Yumeng Yu, Xinchang Wang, Jingjing Xu, Huaqiang Shandong Normal Univ Jinan Peoples R China
In this paper, the conventional lion group algorithm is improved and used to solve dynamic multi-objective optimization Problems (DMOPs). An environment change detection strategy is adopted to determine whether the en... 详细信息
来源: 评论
dynamic multi-objective optimization and fuzzy AHP for copper removal process of zinc hydrometallurgy
收藏 引用
APPLIED SOFT COMPUTING 2022年 第0期129卷
作者: Zhou, Xiaojun Sun, Yan Huang, Zhaoke Yang, Chunhua Yen, Gary G. Cent South Univ Sch Automat Changsha 410083 Peoples R China Peng Cheng Lab Shenzhen 518000 Peoples R China Oklahoma State Univ Sch Elect & Comp Engn Stillwater OK 74078 USA
In order to improve the production efficiency and reduce the production cost of copper removal process (CRP), it is necessary to control the addition rate of zinc powder in CRP. In this study, the control of zinc powd... 详细信息
来源: 评论
A novel quantile-guided dual prediction strategies for dynamic multi-objective optimization
收藏 引用
INFORMATION SCIENCES 2021年 579卷 751-775页
作者: Sun, Hao Cao, Anran Hu, Ziyu Li, Xiaxia Zhao, Zhiwei Yanshan Univ Sch Elect Engn Qinhuangdao 066004 Hebei Peoples R China Yanshan Univ Engn Res Ctr Minist Educ Intelligent Control Syst & Intelligen Qinhuangdao 066004 Hebei Peoples R China Tangshan Univ Dept Comp Sci & Technol Tangshan 063000 Hebei Peoples R China
dynamic multi-objective optimization problems (DMOPs) require evolutionary algorithms (EAs) to accurately track the Pareto-optimal Front (PF) and generate the solutions along the PF in the constantly changing environm... 详细信息
来源: 评论
A new dynamic strategy for dynamic multi-objective optimization
收藏 引用
INFORMATION SCIENCES 2020年 529卷 116-131页
作者: Wu, Yan Shi, Lulu Liu, Xiaoxiong Xidian Univ Sch Math & Stat Xian 710071 Peoples R China Northwestern Polytech Univ Sch Automat Xian 710072 Peoples R China
After detecting the change of the environment, it is effective to respond to the change of the environment. However, the majorities of these methods only respond to the change of the environment once, ignoring the use... 详细信息
来源: 评论
Individual-based self-learning prediction method for dynamic multi-objective optimization
收藏 引用
INFORMATION SCIENCES 2022年 613卷 401-418页
作者: Ou, Junwei Li, Mengjun Xing, Lining Lv, Jimin Hu, Yaru Dong, Nanjiang Zhang, Guoting Natl Univ Def Technol Coll Syst Engn Changsha 410073 Hunan Peoples R China Xiangtan Univ Key Lab Intelligent Comp & Informat Proc Minist Educ Xiangtan 411105 Hunan Peoples R China Beijing Inst Tracking & Telecommun Technol Beijing 100094 Peoples R China
This paper proposes an individual-based self-learning prediction method for dynamic multi-objective optimization problems, called ISPM, to effectively track the time-varying Pareto-optimal set (POS) in a dynamic envir... 详细信息
来源: 评论
An adaptive Gaussian process based manifold transfer learning to expensive dynamic multi-objective optimization
收藏 引用
NEUROCOMPUTING 2023年 第1期538卷
作者: Zhang, Xi Yu, Guo Jin, Yaochu Qian, Feng East China Univ Sci & Technol Key Lab Smart Mfg Energy Chem Proc Shanghai 200237 Peoples R China Nanjing Tech Univ Inst Intelligent Mfg Nanjing 211816 Peoples R China Bielefeld Univ Fac Technol Chair Nat Inspired Comp & Engn D-33619 Bielefeld Germany Univ Surrey Dept Comp Sci Guildford GU2 7XH England
Expensive dynamic multi-objective optimization problems (EDMOPs) is one kind of DMOPs where the objectives change over time and the function evaluations commonly involve computationally intensive simulations or costly... 详细信息
来源: 评论