咨询与建议

限定检索结果

文献类型

  • 141 篇 期刊文献
  • 44 篇 会议

馆藏范围

  • 185 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 181 篇 工学
    • 150 篇 计算机科学与技术...
    • 35 篇 电气工程
    • 18 篇 控制科学与工程
    • 9 篇 信息与通信工程
    • 8 篇 化学工程与技术
    • 7 篇 石油与天然气工程
    • 7 篇 软件工程
    • 6 篇 动力工程及工程热...
    • 4 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 交通运输工程
    • 2 篇 冶金工程
    • 2 篇 土木工程
    • 2 篇 船舶与海洋工程
    • 1 篇 光学工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 航空宇航科学与技...
    • 1 篇 环境科学与工程(可...
    • 1 篇 食品科学与工程(可...
  • 47 篇 管理学
    • 47 篇 管理科学与工程(可...
  • 19 篇 理学
    • 10 篇 生物学
    • 6 篇 数学
    • 2 篇 物理学
    • 2 篇 化学
    • 1 篇 海洋科学
    • 1 篇 统计学(可授理学、...
  • 2 篇 法学
    • 2 篇 法学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 185 篇 dynamic multi-ob...
  • 33 篇 evolutionary alg...
  • 22 篇 prediction
  • 22 篇 evolutionary alg...
  • 19 篇 transfer learnin...
  • 7 篇 decomposition
  • 6 篇 optimization
  • 5 篇 memory
  • 4 篇 dynamic optimiza...
  • 4 篇 diversity
  • 4 篇 prediction strat...
  • 4 篇 particle swarm o...
  • 4 篇 local search
  • 4 篇 evolutionary com...
  • 3 篇 simulation
  • 3 篇 high speed railw...
  • 3 篇 support vector m...
  • 3 篇 constrained opti...
  • 3 篇 convergence
  • 3 篇 differential evo...

机构

  • 12 篇 de montfort univ...
  • 7 篇 huaibei normal u...
  • 7 篇 oklahoma state u...
  • 6 篇 huaibei normal u...
  • 5 篇 yanshan univ key...
  • 5 篇 east china univ ...
  • 4 篇 xiangtan univ ke...
  • 4 篇 beijing univ tec...
  • 4 篇 xiangtan univ sc...
  • 4 篇 hengyang normal ...
  • 4 篇 city univ hong k...
  • 4 篇 xiamen univ sch ...
  • 3 篇 tiangong univ sc...
  • 3 篇 hunan univ sci &...
  • 3 篇 southern univ sc...
  • 3 篇 hefei comprehens...
  • 3 篇 nanjing univ sta...
  • 3 篇 zhengzhou univ l...
  • 3 篇 anhui engn res c...
  • 3 篇 univ surrey dept...

作者

  • 18 篇 yang shengxiang
  • 13 篇 zou juan
  • 13 篇 zheng jinhua
  • 11 篇 hu yaru
  • 9 篇 chen debao
  • 9 篇 ou junwei
  • 7 篇 sun hao
  • 7 篇 yen gary g.
  • 7 篇 hu ziyu
  • 6 篇 wei lixin
  • 6 篇 ruan gan
  • 6 篇 liu ruochen
  • 6 篇 zou feng
  • 6 篇 ma yongjie
  • 6 篇 zhang xi
  • 5 篇 jiang min
  • 5 篇 yao xin
  • 5 篇 jin yaochu
  • 5 篇 ge fangzhen
  • 4 篇 gong dunwei

语言

  • 179 篇 英文
  • 5 篇 其他
  • 1 篇 中文
检索条件"主题词=Dynamic Multi-objective Optimization"
185 条 记 录,以下是61-70 订阅
排序:
A Regional Local Search and Memory based Evolutionary Algorithm for dynamic multi-objective optimization  39
A Regional Local Search and Memory based Evolutionary Algori...
收藏 引用
39th Chinese Control Conference (CCC)
作者: Li, Sanyi Wang, Yanfeng Yue, Weichao Zhengzhou Univ Light Ind Sch Elect & Informat Engn Zhengzhou 450002 Peoples R China
This paper presents a novel dynamic multi-objective optimization algorithm based on region local search and memory (DMOA-RLSM). Firstly, the NSGA2-DM stores useful information (memory) to guide population initializati... 详细信息
来源: 评论
When and How to Transfer Knowledge in dynamic multi-objective optimization
When and How to Transfer Knowledge in Dynamic Multi-objectiv...
收藏 引用
IEEE Symposium Series on Computational Intelligence (SSCI)
作者: Ruan, Gan Minku, Leandro L. Menzel, Stefan Sendhoff, Bernhard Yao, Xin Univ Birmingham Sch Comp Sci CERCIA Birmingham W Midlands England Honda Res Inst Europe GmbH D-63073 Offenbach Germany Southern Univ Sci & Technol Dept Comp Sci & Engn Shenzhen Peoples R China
Transfer learning has been used for solving multiple optimization and dynamic multi-objective optimization problems, since transfer learning is able to transfer useful information from one problem to help solving anot... 详细信息
来源: 评论
A Novel Scalable Framework For Constructing dynamic multi-objective optimization Problems
A Novel Scalable Framework For Constructing Dynamic Multi-ob...
收藏 引用
IEEE Congress on Evolutionary Computation (IEEE CEC)
作者: Tan, Qingshan Li, Changhe Xia, Hai Zeng, Sanyou Yang, Shengxiang China Univ Geosci Sch Automat Wuhan 430074 Peoples R China Hubei Key Lab Adv Control & Intelligent Automat C Wuhan Hubei Peoples R China China Univ Geosci Sch Mech Engn & Elect Informat Wuhan 430074 Peoples R China De Montfort Univ Sch Comp Sci & Informat Leicester LE1 9BH Leics England
Modeling dynamic multi-objective optimization problems (DMOPs) has been one of the most challenging tasks in the field of dynamic evolutionary optimization. Based on the analysis of the existing DMOPs, several feature... 详细信息
来源: 评论
Adaptive dynamic environment response based evolutionary algorithm for dynamic multi-objective optimization  34
Adaptive dynamic environment response based evolutionary alg...
收藏 引用
34th Chinese Control and Decision Conference (CCDC)
作者: Liu, Kanrong Liu, Jianchang Tan, Shubin Li, Fei Zheng, Tianzi Liu, Yuanchao Northeastern Univ Sch Informat Sci & Engn Shenyang 110004 Peoples R China Anhui Univ Technol Dept Elect & Informat Engn Maanshan 243032 Anhui Peoples R China Anhui Univ Technol Anhui Prov Key Lab Special Heavy Load Robot Maanshan 243032 Anhui Peoples R China
In dynamic multi-objective optimization problems (DMOPs), multiple conflicting objectives vary over time. Therefore, a core issue for the DMOPs is to respond the dynamic environments, when the environment change has b... 详细信息
来源: 评论
Knee Points based Transfer dynamic multi-objective optimization Evolutionary Algorithm
Knee Points based Transfer Dynamic Multi-objective Optimizat...
收藏 引用
IEEE Congress on Evolutionary Computation (CEC) as part of the IEEE World Congress on Computational Intelligence (IEEE WCCI)
作者: Wang, Zhenzhong Mei, Zhongrui Jiang, Min Yen, Gary Xiamen Univ Sch Informat Xiamen 361005 Peoples R China Oklahoma State Univ Sch Elect & Comp Engn Stillwater OK 74078 USA
When dynamic multi-objective optimization evolutionary algorithms (DMOEA) are used to solve real world problems, these are not only required to be able to find the Pareto-Optimal Set (POS) quickly, but also the result... 详细信息
来源: 评论
A Hybrid Immigrants Strategy for dynamic multi-objective optimization  10
A Hybrid Immigrants Strategy for Dynamic Multi-objective Opt...
收藏 引用
10th International Conference on Advanced Computational Intelligence (ICACI)
作者: Shi, Lulu Wu, Yan Zhou, Yan Xidian Univ Sch Math & Stat Xian Shaanxi Peoples R China Army Acad Border & Coastal Def Xian Shaanxi Peoples R China
dynamic multi-objective optimization problems exist in the real world widely, requiring the optimization algorithm that has the ability to trace the Pareto-optimal set as time goes on. They appeal many people's at... 详细信息
来源: 评论
Improved Population Prediction Strategy for dynamic multi-objective optimization Algorithms Using Transfer Learning
Improved Population Prediction Strategy for Dynamic Multi-Ob...
收藏 引用
IEEE Congress on Evolutionary Computation (IEEE CEC)
作者: Liu, Zhening Wang, Handing Xidian Univ Sch Artificial Intelligence Xian Peoples R China
Many real-world optimization problems have dynamic multiple objectives and constrains, such problems are called dynamic multi-objective optimization problems (DMOPs). Although many dynamic multi-objective evolutionary... 详细信息
来源: 评论
Prediction Strategy Assisted by LSTM Neural Network for dynamic multi-objective optimization  6
Prediction Strategy Assisted by LSTM Neural Network for Dyna...
收藏 引用
6th International Conference on Data-Driven optimization of Complex Systems (DOCS)
作者: Li, Suixun Zou, Feng Chen, Debao Huang, Huimei Huaibei Normal Univ Sch Phys & Elect Informat Anhui Prov Key Lab Intelligent Comp & Applicat Huaibei Peoples R China
dynamic multi-objective optimization problems (DMOPs) exist widely in real life, and the algorithm needs to track changing Pareto optima accurately and quickly after the environment changes when dealing with these DMO... 详细信息
来源: 评论
An Evolutionary dynamic multi-objective optimization Algorithm Based on Center-point Prediction and Sub-population Autonomous Guidance  8
An Evolutionary Dynamic Multi-objective Optimization Algorit...
收藏 引用
8th IEEE Symposium Series on Computational Intelligence (IEEE SSCI)
作者: Zhou, Jianwei Zou, Juan Yang, Shengxiang Ruan, Gan Ou, Junwei Zheng, Jinhua Xiangtan Univ Sch Informat Engn Xiangtan 411105 Peoples R China De Montfort Univ Sch Comp Sci & Informat Leicester LE1 9BH Leics England
dynamic multi-objective optimization problems (DMOPs) provide a challenge in that objectives conflict each other and change over time. In this paper, a hybrid approach based on prediction and autonomous guidance is pr... 详细信息
来源: 评论
Evolutionary dynamic multi-objective optimization via Regression Transfer Learning
Evolutionary Dynamic Multi-objective Optimization via Regres...
收藏 引用
IEEE Symposium Series on Computational Intelligence (SSCI)
作者: Wang, Zhenzhong Jiang, Min Gao, Xing Feng, Liang Hu, Weizhen Tan, Kay Chen Xiamen Univ Sch Informat Xiamen 361005 Peoples R China Chongqing Univ Coll Comp Sci Chongqing 400044 Peoples R China City Univ Hong Kong Dept Comp Sci Hong Kong Peoples R China
dynamic multi-objective optimization problems (DMOPs) remain a challenge to be settled, because of conflicting objective functions change over time. In recent years, transfer learning has been proven to be a kind of e... 详细信息
来源: 评论