咨询与建议

限定检索结果

文献类型

  • 142 篇 期刊文献
  • 44 篇 会议

馆藏范围

  • 186 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 182 篇 工学
    • 151 篇 计算机科学与技术...
    • 35 篇 电气工程
    • 19 篇 控制科学与工程
    • 10 篇 信息与通信工程
    • 8 篇 化学工程与技术
    • 7 篇 石油与天然气工程
    • 7 篇 软件工程
    • 6 篇 动力工程及工程热...
    • 4 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 交通运输工程
    • 2 篇 冶金工程
    • 2 篇 土木工程
    • 2 篇 船舶与海洋工程
    • 1 篇 光学工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 电子科学与技术(可...
    • 1 篇 航空宇航科学与技...
    • 1 篇 环境科学与工程(可...
    • 1 篇 食品科学与工程(可...
  • 47 篇 管理学
    • 47 篇 管理科学与工程(可...
  • 19 篇 理学
    • 10 篇 生物学
    • 6 篇 数学
    • 2 篇 物理学
    • 2 篇 化学
    • 1 篇 海洋科学
    • 1 篇 统计学(可授理学、...
  • 2 篇 法学
    • 2 篇 法学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 186 篇 dynamic multi-ob...
  • 33 篇 evolutionary alg...
  • 22 篇 prediction
  • 22 篇 evolutionary alg...
  • 19 篇 transfer learnin...
  • 7 篇 decomposition
  • 6 篇 optimization
  • 5 篇 memory
  • 4 篇 dynamic optimiza...
  • 4 篇 diversity
  • 4 篇 prediction strat...
  • 4 篇 particle swarm o...
  • 4 篇 local search
  • 4 篇 evolutionary com...
  • 3 篇 simulation
  • 3 篇 high speed railw...
  • 3 篇 support vector m...
  • 3 篇 constrained opti...
  • 3 篇 convergence
  • 3 篇 differential evo...

机构

  • 12 篇 de montfort univ...
  • 7 篇 huaibei normal u...
  • 7 篇 oklahoma state u...
  • 6 篇 huaibei normal u...
  • 5 篇 yanshan univ key...
  • 5 篇 east china univ ...
  • 4 篇 xiangtan univ ke...
  • 4 篇 beijing univ tec...
  • 4 篇 xiangtan univ sc...
  • 4 篇 hengyang normal ...
  • 4 篇 city univ hong k...
  • 4 篇 xiamen univ sch ...
  • 3 篇 tiangong univ sc...
  • 3 篇 hunan univ sci &...
  • 3 篇 southern univ sc...
  • 3 篇 hefei comprehens...
  • 3 篇 nanjing univ sta...
  • 3 篇 zhengzhou univ l...
  • 3 篇 anhui engn res c...
  • 3 篇 univ surrey dept...

作者

  • 18 篇 yang shengxiang
  • 13 篇 zou juan
  • 13 篇 zheng jinhua
  • 11 篇 hu yaru
  • 9 篇 chen debao
  • 9 篇 ou junwei
  • 7 篇 sun hao
  • 7 篇 yen gary g.
  • 7 篇 hu ziyu
  • 6 篇 wei lixin
  • 6 篇 ruan gan
  • 6 篇 liu ruochen
  • 6 篇 zou feng
  • 6 篇 ma yongjie
  • 6 篇 zhang xi
  • 5 篇 jiang min
  • 5 篇 yao xin
  • 5 篇 jin yaochu
  • 5 篇 ge fangzhen
  • 4 篇 gong dunwei

语言

  • 180 篇 英文
  • 4 篇 其他
  • 1 篇 中文
检索条件"主题词=Dynamic Multi-objective Optimization"
186 条 记 录,以下是81-90 订阅
排序:
dynamic multi-objective optimization algorithm based on prediction strategy
收藏 引用
JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY 2018年 第2期21卷 411-415页
作者: Li, Er-Chao Ma, Xiang-Qi Lanzhou Univ Technol Fac Elect Engn & Informat Engn Lanzhou 730000 Gansu Peoples R China
In order to effectively solve the dynamic multi-objective optimization problem, a new dynamic multi-objective optimization algorithm based on prediction strategy is provided in this *** algorithm detects changes in th... 详细信息
来源: 评论
dynamic multi-objective optimization for mixed traffic flow based on partial least squares prediction model
收藏 引用
JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY 2019年 第13期13卷 -页
作者: Chen, Juan Xue, Zhengxuan Han, Dongxiao Shanghai Univ SHU UTS SILC Business Sch Shanghai 201899 Peoples R China
A dynamic multi-objective genetic algorithm based on partial least squares prediction model (DNSGA-II-PLS) is presented in this paper to solve the mix traffic flow multi-objective timing optimization problem with time... 详细信息
来源: 评论
Evolutionary dynamic multi-objective optimization algorithm based on Borda count method
收藏 引用
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS 2019年 第8期10卷 1931-1959页
作者: Orouskhani, Maysam Teshnehlab, Mohammad Nekoui, Mohammad Ali Islamic Azad Univ Sci & Res Branch Dept Comp Engn Tehran Iran KN Toosi Univ Dept Elect Engn Ind Control Ctr Excellence Tehran Iran
In this paper, a novel dynamic multi-objective optimization algorithm is introduced. The proposed method is composed of three parts: change detection, response to change, and optimization process. The first step is to... 详细信息
来源: 评论
Solving dynamic multi-objective optimization Problems Using Cultural Algorithm based on Decomposition  3
Solving Dynamic Multi-Objective Optimization Problems Using ...
收藏 引用
3rd International Conference on Vision, Image and Signal Processing (ICVISP)
作者: Ravichandran, Ramya Kobti, Ziad Univ Windsor Sch Comp Sci Windsor ON Canada
The importance of dynamic multi-objective optimization problems (DMOPs) is on the rise, in complex systems. DMOPs have several objective functions and constraints that vary over time to be considered simultaneously. A... 详细信息
来源: 评论
When and How to Transfer Knowledge in dynamic multi-objective optimization
When and How to Transfer Knowledge in Dynamic Multi-objectiv...
收藏 引用
IEEE Symposium Series on Computational Intelligence (SSCI)
作者: Ruan, Gan Minku, Leandro L. Menzel, Stefan Sendhoff, Bernhard Yao, Xin Univ Birmingham Sch Comp Sci CERCIA Birmingham W Midlands England Honda Res Inst Europe GmbH D-63073 Offenbach Germany Southern Univ Sci & Technol Dept Comp Sci & Engn Shenzhen Peoples R China
Transfer learning has been used for solving multiple optimization and dynamic multi-objective optimization problems, since transfer learning is able to transfer useful information from one problem to help solving anot... 详细信息
来源: 评论
Evolutionary dynamic multi-objective optimization via Regression Transfer Learning
Evolutionary Dynamic Multi-objective Optimization via Regres...
收藏 引用
IEEE Symposium Series on Computational Intelligence (SSCI)
作者: Wang, Zhenzhong Jiang, Min Gao, Xing Feng, Liang Hu, Weizhen Tan, Kay Chen Xiamen Univ Sch Informat Xiamen 361005 Peoples R China Chongqing Univ Coll Comp Sci Chongqing 400044 Peoples R China City Univ Hong Kong Dept Comp Sci Hong Kong Peoples R China
dynamic multi-objective optimization problems (DMOPs) remain a challenge to be settled, because of conflicting objective functions change over time. In recent years, transfer learning has been proven to be a kind of e... 详细信息
来源: 评论
A Regional Local Search and Memory based Evolutionary Algorithm for dynamic multi-objective optimization
A Regional Local Search and Memory based Evolutionary Algori...
收藏 引用
第三十九届中国控制会议
作者: Sanyi Li Yanfeng Wang Weichao Yue School of Electrical and Information Engineering Zhengzhou University of Light Industry
This paper presents a novel dynamic multi-objective optimization algorithm based on region local search and memory(DMOA-RLSM). Firstly, the NSGA2-DM stores useful information(memory) to guide population initializa... 详细信息
来源: 评论
Solving dynamic multi-objective optimization Problems Using Cultural Algorithm based on Decomposition  2019
Solving Dynamic Multi-Objective Optimization Problems Using ...
收藏 引用
Proceedings of the 3rd International Conference on Vision, Image and Signal Processing
作者: Ramya Ravichandran Ziad Kobti School of Computer Science University of Windsor Windsor ON Canada
The importance of dynamic multi-objective optimization problems (DMOPs) is on the rise, in complex systems. DMOPs have several objective functions and constraints that vary over time to be considered simultaneously. A... 详细信息
来源: 评论
A hybrid fuzzy inference prediction strategy for dynamic multi-objective optimization
收藏 引用
SWARM AND EVOLUTIONARY COMPUTATION 2018年 43卷 147-165页
作者: Chen, Debao Zou, Feng Lu, Renquan Wang, Xude Huaibei Normal Univ Sch Phys & Elect Informat Huaibei 235000 Peoples R China Guangdong Univ Technol Sch Automat Guangzhou 510006 Guangdong Peoples R China
Many real-world multi-objective optimization problems (MOPs) are dynamic in which variables of search space and/or objective space change over time. Hence the optimization algorithms should can quickly and efficiently... 详细信息
来源: 评论
Environment Sensitivity-Based Cooperative Co-Evolutionary Algorithms for dynamic multi-objective optimization
收藏 引用
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018年 第6期15卷 1877-1890页
作者: Xu, Biao Zhang, Yong Gong, Dunwei Guo, Yinan Rong, Miao China Univ Min & Technol Sch Informat & Elect Engn Xuzhou 221116 Jiangsu Peoples R China Huaibei Normal Univ Sch Math Sci Huaibei 235000 Peoples R China
dynamic multi-objective optimization problems (DMOPs) not only involve multiple conflicting objectives, but these objectives may also vary with time, raising a challenge for researchers to solve them. This paper prese... 详细信息
来源: 评论