咨询与建议

限定检索结果

文献类型

  • 142 篇 期刊文献
  • 44 篇 会议

馆藏范围

  • 186 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 182 篇 工学
    • 151 篇 计算机科学与技术...
    • 35 篇 电气工程
    • 19 篇 控制科学与工程
    • 10 篇 信息与通信工程
    • 8 篇 化学工程与技术
    • 7 篇 石油与天然气工程
    • 7 篇 软件工程
    • 6 篇 动力工程及工程热...
    • 4 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 交通运输工程
    • 2 篇 冶金工程
    • 2 篇 土木工程
    • 2 篇 船舶与海洋工程
    • 1 篇 光学工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 电子科学与技术(可...
    • 1 篇 航空宇航科学与技...
    • 1 篇 环境科学与工程(可...
    • 1 篇 食品科学与工程(可...
  • 47 篇 管理学
    • 47 篇 管理科学与工程(可...
  • 19 篇 理学
    • 10 篇 生物学
    • 6 篇 数学
    • 2 篇 物理学
    • 2 篇 化学
    • 1 篇 海洋科学
    • 1 篇 统计学(可授理学、...
  • 2 篇 法学
    • 2 篇 法学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 186 篇 dynamic multi-ob...
  • 33 篇 evolutionary alg...
  • 22 篇 prediction
  • 22 篇 evolutionary alg...
  • 19 篇 transfer learnin...
  • 7 篇 decomposition
  • 6 篇 optimization
  • 5 篇 memory
  • 4 篇 dynamic optimiza...
  • 4 篇 diversity
  • 4 篇 prediction strat...
  • 4 篇 particle swarm o...
  • 4 篇 local search
  • 4 篇 evolutionary com...
  • 3 篇 simulation
  • 3 篇 high speed railw...
  • 3 篇 support vector m...
  • 3 篇 constrained opti...
  • 3 篇 convergence
  • 3 篇 differential evo...

机构

  • 12 篇 de montfort univ...
  • 7 篇 huaibei normal u...
  • 7 篇 oklahoma state u...
  • 6 篇 huaibei normal u...
  • 5 篇 yanshan univ key...
  • 5 篇 east china univ ...
  • 4 篇 xiangtan univ ke...
  • 4 篇 beijing univ tec...
  • 4 篇 xiangtan univ sc...
  • 4 篇 hengyang normal ...
  • 4 篇 city univ hong k...
  • 4 篇 xiamen univ sch ...
  • 3 篇 tiangong univ sc...
  • 3 篇 hunan univ sci &...
  • 3 篇 southern univ sc...
  • 3 篇 hefei comprehens...
  • 3 篇 nanjing univ sta...
  • 3 篇 zhengzhou univ l...
  • 3 篇 anhui engn res c...
  • 3 篇 univ surrey dept...

作者

  • 18 篇 yang shengxiang
  • 13 篇 zou juan
  • 13 篇 zheng jinhua
  • 11 篇 hu yaru
  • 9 篇 chen debao
  • 9 篇 ou junwei
  • 7 篇 sun hao
  • 7 篇 yen gary g.
  • 7 篇 hu ziyu
  • 6 篇 wei lixin
  • 6 篇 ruan gan
  • 6 篇 liu ruochen
  • 6 篇 zou feng
  • 6 篇 ma yongjie
  • 6 篇 zhang xi
  • 5 篇 jiang min
  • 5 篇 yao xin
  • 5 篇 jin yaochu
  • 5 篇 ge fangzhen
  • 4 篇 gong dunwei

语言

  • 180 篇 英文
  • 4 篇 其他
  • 1 篇 中文
检索条件"主题词=Dynamic Multi-objective optimization"
186 条 记 录,以下是21-30 订阅
排序:
Solving dynamic multi-objective optimization problem of immersed tunnel elements via multi-source evolutionary information clustering method
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2025年 140卷
作者: Fan, Qinqin Huang, Wentao Yu, Moduo Tang, Qirong Jiang, Qingchao Shanghai Maritime Univ Logist Res Ctr Shanghai 201306 Peoples R China Shanghai Jiao Tong Univ Key Lab Control Power Transmiss & Convers Shanghai 200240 Peoples R China Tongji Univ Lab Robot & Multibody Syst Shanghai 200092 Peoples R China East China Univ Sci & Technol Key Lab Smart Mfg Energy Chem Proc Minist Educ Shanghai 200237 Peoples R China
dynamic multi-objective optimization problems (DMOPs) are time- and space-varying, thus maintaining/ improving the uncertainty degree of evolutionary information (i.e., information entropy) in the population and provi... 详细信息
来源: 评论
Division-selection transfer learning for prediction based dynamic multi-objective optimization
收藏 引用
COMPLEX & INTELLIGENT SYSTEMS 2025年 第1期11卷 1-21页
作者: Li, Hongye Liang, Fan Liu, Yulu Zheng, Quanheng Guo, Kunru Xian Univ Posts & Telecommun Sch Comp Sci & Technol Xian 710121 Shaanxi Peoples R China Xian Univ Posts & Telecommun Shaanxi Key Lab Network Data Anal & Intelligent Pr Xian 710121 Shaanxi Peoples R China Xian Univ Posts & Telecommun Xian Key Lab Big Data & Intelligent Comp Xian 710121 Shaanxi Peoples R China
dynamic multi-objective optimization problems (DMOPs) are challenging as they require capturing the Pareto optimal front (POF) and Pareto optimal set (POS) during the optimization process. In recent years, transfer le... 详细信息
来源: 评论
Knowledge hierarchy-based dynamic multi-objective optimization method for AUV path planning in cooperative search missions
收藏 引用
OCEAN ENGINEERING 2024年 第Part3期312卷
作者: Wang, Yinhuan Liu, Kaizhou Geng, Lingbo Zhang, Shaoze Chinese Acad Sci Shenyang Inst Automat State Key Lab Robot Shenyang 110016 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China
This study focuses on path planning for Autonomous Underwater Vehicles (AUVs) in underwater cooperative search missions. The complexities of the ocean environment, the uncertainty of target movements, and limited comm... 详细信息
来源: 评论
An adaptive Gaussian process based manifold transfer learning to expensive dynamic multi-objective optimization
收藏 引用
NEUROCOMPUTING 2023年 第1期538卷
作者: Zhang, Xi Yu, Guo Jin, Yaochu Qian, Feng East China Univ Sci & Technol Key Lab Smart Mfg Energy Chem Proc Shanghai 200237 Peoples R China Nanjing Tech Univ Inst Intelligent Mfg Nanjing 211816 Peoples R China Bielefeld Univ Fac Technol Chair Nat Inspired Comp & Engn D-33619 Bielefeld Germany Univ Surrey Dept Comp Sci Guildford GU2 7XH England
Expensive dynamic multi-objective optimization problems (EDMOPs) is one kind of DMOPs where the objectives change over time and the function evaluations commonly involve computationally intensive simulations or costly... 详细信息
来源: 评论
A new hybrid prediction model with entropy-like kernel function for dynamic multi-objective optimization
收藏 引用
APPLIED INTELLIGENCE 2023年 第9期53卷 10500-10519页
作者: Cao, Siyu Zou, Feng Chen, Debao Liu, Hui Ji, Xuying Zhang, Yan Huaibei Normal Univ Sch Phys & Elect Informat Huaibei 235000 Peoples R China Huaibei Normal Univ Sch Comp Sci & Technol Huaibei 235000 Peoples R China
dynamic multi-objective problems (DMOPs) permeate all aspects of daily life and practical applications. As the variables of the search space or target space alter in pace with time, savants are also deepening the rese... 详细信息
来源: 评论
multi-spatial information joint guidance evolutionary algorithm for dynamic multi-objective optimization with a changing number of objectives
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2023年 第20期35卷 15167-15199页
作者: Ma, Xuemin Sun, Hao Hu, Ziyu Wei, Lixin Yang, Jingming Yanshan Univ Engn Res Ctr Minist Educ Intelligent Control Syst & Intelligent Qinhuangdao 066004 Hebei Peoples R China Yanshan Univ Key Lab Ind Comp Control Engn Hebei Prov Qinhuangdao 066004 Hebei Peoples R China
Existing research on dynamic multi-objective optimization problems involving changes in the number of objectives has received little attention, but it is widespread in practical applications. This problem would cause ... 详细信息
来源: 评论
Cluster-Based Regression Transfer Learning for dynamic multi-objective optimization
收藏 引用
PROCESSES 2023年 第2期11卷 613页
作者: Zhang, Xi Qian, Feng Zhang, Liping East China Univ Sci & Technol Key Lab Smart Mfg Energy Chem Proc Shanghai 200237 Peoples R China Shanxi Agr Univ Inst Cotton Res Yuncheng 044000 Peoples R China
Many multi-objective optimization problems in the real world have conflicting objectives, and these objectives change over time, known as dynamic multi-objective optimization problems (DMOPs). In recent years, transfe... 详细信息
来源: 评论
An environment-driven hybrid evolutionary algorithm for dynamic multi-objective optimization problems
收藏 引用
COMPLEX & INTELLIGENT SYSTEMS 2023年 第1期9卷 659-675页
作者: Chen, Meirong Guo, Yinan Jin, Yaochu Yang, Shengxiang Gong, Dunwei Yu, Zekuan China Univ Min & Technol Sch Math Xuzhou 221116 Jiangsu Peoples R China China Univ Min & Technol Sch Informat & Elect Engn Xuzhou 221116 Jiangsu Peoples R China China Univ Min & Technol Beijing Sch Mech Elect & Informat Engn Beijing 100083 Peoples R China Univ Surrey Dept Comp Sci Guildford GU2 7XH Surrey England De Montfort Univ Sch Comp Sci & Informat Leicester LE1 9BH Leics England Fudan Univ Huashan Hosp Dept Radiol Shanghai 200040 Peoples R China
In dynamic multi-objective optimization problems, the environmental parameters may change over time, which makes the Pareto fronts shifting. To address the issue, a common idea is to track the moving Pareto front once... 详细信息
来源: 评论
A special point-based transfer component analysis for dynamic multi-objective optimization
收藏 引用
COMPLEX & INTELLIGENT SYSTEMS 2023年 第2期9卷 1229-1245页
作者: Liu, Ruochen Li, Nanxi Peng, Luyao Wu, Kai Xidian Univ Key Lab Intelligent Percept & Image Understanding Minist Educ Int Ctr Intelligent Percept & Computat Xian 710071 Peoples R China
To solve dynamic multi-objective optimization problems better, the key is to adapt quickly to environmental changes and track the possible changing optimal solutions in time. In this paper, we propose a special point-... 详细信息
来源: 评论
An Adaptive Knowledge Transfer Strategy for Evolutionary dynamic multi-objective optimization  18th
An Adaptive Knowledge Transfer Strategy for Evolutionary Dyn...
收藏 引用
18th International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)
作者: Zhao, Donghui Lu, Xiaofen Tang, Ke Southern Univ Sci & Technol Dept Comp Sci & Engn Guangdong Prov Key Lab Brain Inspired Intelligent Shenzhen 518055 Peoples R China Southern Univ Sci & Technol Res Inst Trustworthy Autonomous Syst Shenzhen 518055 Peoples R China
dynamic multi-objective optimization problems (DMOPs) are optimization problems involve multiple conflicting objectives, and these objectives change over time. The challenge in solving DMOPs is how to quickly track th... 详细信息
来源: 评论