咨询与建议

限定检索结果

文献类型

  • 142 篇 期刊文献
  • 44 篇 会议

馆藏范围

  • 186 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 182 篇 工学
    • 151 篇 计算机科学与技术...
    • 35 篇 电气工程
    • 19 篇 控制科学与工程
    • 10 篇 信息与通信工程
    • 8 篇 化学工程与技术
    • 7 篇 石油与天然气工程
    • 7 篇 软件工程
    • 6 篇 动力工程及工程热...
    • 4 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 交通运输工程
    • 2 篇 冶金工程
    • 2 篇 土木工程
    • 2 篇 船舶与海洋工程
    • 1 篇 光学工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 电子科学与技术(可...
    • 1 篇 航空宇航科学与技...
    • 1 篇 环境科学与工程(可...
    • 1 篇 食品科学与工程(可...
  • 47 篇 管理学
    • 47 篇 管理科学与工程(可...
  • 19 篇 理学
    • 10 篇 生物学
    • 6 篇 数学
    • 2 篇 物理学
    • 2 篇 化学
    • 1 篇 海洋科学
    • 1 篇 统计学(可授理学、...
  • 2 篇 法学
    • 2 篇 法学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 186 篇 dynamic multi-ob...
  • 33 篇 evolutionary alg...
  • 22 篇 prediction
  • 22 篇 evolutionary alg...
  • 19 篇 transfer learnin...
  • 7 篇 decomposition
  • 6 篇 optimization
  • 5 篇 memory
  • 4 篇 dynamic optimiza...
  • 4 篇 diversity
  • 4 篇 prediction strat...
  • 4 篇 particle swarm o...
  • 4 篇 local search
  • 4 篇 evolutionary com...
  • 3 篇 simulation
  • 3 篇 high speed railw...
  • 3 篇 support vector m...
  • 3 篇 constrained opti...
  • 3 篇 convergence
  • 3 篇 differential evo...

机构

  • 12 篇 de montfort univ...
  • 7 篇 huaibei normal u...
  • 7 篇 oklahoma state u...
  • 6 篇 huaibei normal u...
  • 5 篇 yanshan univ key...
  • 5 篇 east china univ ...
  • 4 篇 xiangtan univ ke...
  • 4 篇 beijing univ tec...
  • 4 篇 xiangtan univ sc...
  • 4 篇 hengyang normal ...
  • 4 篇 city univ hong k...
  • 4 篇 xiamen univ sch ...
  • 3 篇 tiangong univ sc...
  • 3 篇 hunan univ sci &...
  • 3 篇 southern univ sc...
  • 3 篇 hefei comprehens...
  • 3 篇 nanjing univ sta...
  • 3 篇 zhengzhou univ l...
  • 3 篇 anhui engn res c...
  • 3 篇 univ surrey dept...

作者

  • 18 篇 yang shengxiang
  • 13 篇 zou juan
  • 13 篇 zheng jinhua
  • 11 篇 hu yaru
  • 9 篇 chen debao
  • 9 篇 ou junwei
  • 7 篇 sun hao
  • 7 篇 yen gary g.
  • 7 篇 hu ziyu
  • 6 篇 wei lixin
  • 6 篇 ruan gan
  • 6 篇 liu ruochen
  • 6 篇 zou feng
  • 6 篇 ma yongjie
  • 6 篇 zhang xi
  • 5 篇 jiang min
  • 5 篇 yao xin
  • 5 篇 jin yaochu
  • 5 篇 ge fangzhen
  • 4 篇 gong dunwei

语言

  • 180 篇 英文
  • 4 篇 其他
  • 1 篇 中文
检索条件"主题词=Dynamic Multi-objective optimization"
186 条 记 录,以下是51-60 订阅
排序:
Enhancing dynamic multi-objective optimization Using Opposition-based Learning and Simulated Annealing
收藏 引用
INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS 2023年 第4期32卷 2350037-2350037页
作者: Ilyas, Kiran Younas, Irfan Univ Management & Technol Sch Syst & Technol Lahore 54000 Pakistan Natl Univ Comp & Emerging Sci FAST Sch Comp Lahore 54000 Pakistan
There are many dynamic real-life optimization problems in which objectives increase or decrease over time, which usually leads to variations in the dimensions of a Pareto front. dynamic multi-objective optimization (D... 详细信息
来源: 评论
Temporal distribution-based prediction strategy for dynamic multi-objective optimization assisted by GRU neural network
收藏 引用
INFORMATION SCIENCES 2023年 第1期649卷
作者: Hou, Xing Ge, Fangzhen Chen, Debao Shen, Longfeng Zou, Feng Huaibei Normal Univ Sch Comp Sci & Technol Huaibei 235000 Peoples R China Anhui Engn Res Ctr Intelligent Comp & Applicat Cog Huaibei 235000 Anhui Peoples R China Hefei Comprehens Natl Sci Ctr Inst Artificial Intelligence Hefei Peoples R China Huaibei Normal Univ Sch Phys & Elect Informat Huaibei 235000 Peoples R China Anhui Prov Key Lab Intelligent Comp & Applicat Huaibei 235000 Anhui Peoples R China
To solve dynamic multi-objective optimization problems, evolutionary algorithms must be capable of quickly and accurately tracking the changing Pareto front such that they can respond in a timely and effective manner ... 详细信息
来源: 评论
A two-level parallel decomposition-based artificial bee colony method for dynamic multi-objective optimization problems
收藏 引用
APPLIED SOFT COMPUTING 2023年 147卷
作者: Bai, Yuyang Zhang, Changsheng Bai, Weitong Northeastern Univ Dept Software Engn ShenYing St Shenyang 110102 Liaoning Peoples R China Tianjin Agr Bank China Dept R&D HaiTai St Tianjin 300380 Peoples R China
Many real-world multiple-objective optimization problems have objectives that change over time. These multiple-objective optimization problems are called dynamic multiple-objective optimization problems (DMOPs) and ha... 详细信息
来源: 评论
A self-adaptive dynamic multi-objective optimization algorithm based on transfer learning and elitism-based mutation
收藏 引用
NEUROCOMPUTING 2023年 559卷
作者: Zhang, Xi Jin, Yaochu Qian, Feng East China Univ Sci & Technol Key Lab Smart Mfg Energy Chem Proc Shanghai 200237 Peoples R China Bielefeld Univ Fac Technol Chair Nat Inspired Comp & Engn D-33619 Bielefeld Germany Univ Surrey Dept Comp Sci Guildford GU2 7XH Surrey England East China Univ Sci & Technol Engn Res Ctr Proc Syst Engn Minist Educ Shanghai 200237 Peoples R China
dynamic multi-objective optimization problems (DMOPs) involve several conflicting objectives, and these objective functions change over time. Therefore, addressing DMOPs necessitates an effective response to environme... 详细信息
来源: 评论
A novel combinational response mechanism for dynamic multi-objective optimization
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2023年 第1期233卷
作者: Aliniya, Zahra Khasteh, Seyed Hossein KN Toosi Univ Technol Dept Comp Engn POB 15875-4416 Tehran Iran
Many real-world multi-objective optimization problems are dynamic. These problems require an optimization algorithm to quickly track optimal solutions after changing the environment. In most dynamic multi-objective op... 详细信息
来源: 评论
A dynamic interval multi-objective optimization algorithm based on environmental change detection
收藏 引用
INFORMATION SCIENCES 2025年 694卷
作者: Cai, Xingjuan Li, Bohui Wu, Linjie Chang, Teng Zhang, Wensheng Chen, Jinjun Taiyuan Univ Sci & Technol Shanxi Key Lab Big Data Anal & Parallel Comp Taiyuan 030024 Shanxi Peoples R China Nanjing Univ State Key Lab Novel Software Technol Nanjing Peoples R China Chinese Acad Sci Inst Automat State Key Lab Intelligent Control & Management Com Beijing Peoples R China Swinburne Univ Technol Dept Comp Sci & Software Engn Melbourne Vic 3000 Australia
dynamic interval multi-objective optimization problems are a class of optimization problems whose interval parameters change with the environment. However, the existing algorithms fail to fully consider the characteri... 详细信息
来源: 评论
Decision-Maker's Preference-Driven dynamic multi-objective optimization
收藏 引用
ALGORITHMS 2023年 第11期16卷 504-504页
作者: Adekoya, Adekunle Rotimi Helbig, Marde Stellenbosch Univ Comp Sci Div ZA-7600 Stellenbosch South Africa Univ Pretoria Dept Comp Sci ZA-0002 Pretoria South Africa Griffith Univ Sch ICT Southport 4215 Australia
dynamic multi-objective optimization problems (DMOPs) are optimization problems where elements of the problems, such as the objective functions and/or constraints, change with time. These problems are characterized by... 详细信息
来源: 评论
A Novel Scalable Framework For Constructing dynamic multi-objective optimization Problems
A Novel Scalable Framework For Constructing Dynamic Multi-ob...
收藏 引用
IEEE Congress on Evolutionary Computation (IEEE CEC)
作者: Tan, Qingshan Li, Changhe Xia, Hai Zeng, Sanyou Yang, Shengxiang China Univ Geosci Sch Automat Wuhan 430074 Peoples R China Hubei Key Lab Adv Control & Intelligent Automat C Wuhan Hubei Peoples R China China Univ Geosci Sch Mech Engn & Elect Informat Wuhan 430074 Peoples R China De Montfort Univ Sch Comp Sci & Informat Leicester LE1 9BH Leics England
Modeling dynamic multi-objective optimization problems (DMOPs) has been one of the most challenging tasks in the field of dynamic evolutionary optimization. Based on the analysis of the existing DMOPs, several feature... 详细信息
来源: 评论
dynamic multi-objective evolutionary optimization algorithm based on two-stage prediction strategy
收藏 引用
ISA TRANSACTIONS 2023年 第1期139卷 308-321页
作者: Guo, Zeyin Wei, Lixin Fan, Rui Sun, Hao Hu, Ziyu Yanshan Univ Engn Res Ctr Minist Educ Intelligent Control Syst & Intelligen Qinhuangdao Hebei Peoples R China Yanshan Univ Key Lab Ind Comp Control Engn Hebei Prov Qinhuangdao Hebei Peoples R China Qingdao Univ Technol Sch Informat & Control Engn Qingdao 266520 Peoples R China
Tracking pareto-optimal set or pareto-optimal front in limited time is an important problem of dynamic multi-objective optimization evolutionary algorithms (DMOEAs). However, the current DMOEAs suffer from some defici... 详细信息
来源: 评论
A novel predictive method based on key points for dynamic multi-objective optimization
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2022年 第0期190卷 116127-116127页
作者: Wang, Chunfeng Yen, Gary G. Zou, Fei Xianyang Normal Univ Sch Math & Stat Xianyang 712000 Peoples R China Oklahoma State Univ Sch Elect & Comp Engn Stillwater OK 74078 USA Shenyang Univ Technol Sch Artificial Intelligence Shenyang 110870 Peoples R China
dynamic multi-objective problem is very difficult to be solved because of the variability of the objective function with time. To overcome the difficult caused by such variability, a predictive method utilizing some k... 详细信息
来源: 评论