咨询与建议

限定检索结果

文献类型

  • 143 篇 期刊文献
  • 44 篇 会议

馆藏范围

  • 187 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 183 篇 工学
    • 152 篇 计算机科学与技术...
    • 35 篇 电气工程
    • 19 篇 控制科学与工程
    • 9 篇 信息与通信工程
    • 8 篇 化学工程与技术
    • 8 篇 软件工程
    • 7 篇 石油与天然气工程
    • 6 篇 动力工程及工程热...
    • 4 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 交通运输工程
    • 2 篇 冶金工程
    • 2 篇 土木工程
    • 2 篇 船舶与海洋工程
    • 1 篇 光学工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 航空宇航科学与技...
    • 1 篇 环境科学与工程(可...
    • 1 篇 食品科学与工程(可...
  • 48 篇 管理学
    • 48 篇 管理科学与工程(可...
    • 1 篇 工商管理
    • 1 篇 图书情报与档案管...
  • 19 篇 理学
    • 10 篇 生物学
    • 6 篇 数学
    • 2 篇 物理学
    • 2 篇 化学
    • 1 篇 海洋科学
    • 1 篇 统计学(可授理学、...
  • 2 篇 法学
    • 2 篇 法学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 187 篇 dynamic multi-ob...
  • 33 篇 evolutionary alg...
  • 22 篇 prediction
  • 22 篇 evolutionary alg...
  • 19 篇 transfer learnin...
  • 7 篇 decomposition
  • 6 篇 optimization
  • 5 篇 memory
  • 4 篇 dynamic optimiza...
  • 4 篇 diversity
  • 4 篇 prediction strat...
  • 4 篇 particle swarm o...
  • 4 篇 local search
  • 4 篇 evolutionary com...
  • 3 篇 simulation
  • 3 篇 high speed railw...
  • 3 篇 support vector m...
  • 3 篇 constrained opti...
  • 3 篇 convergence
  • 3 篇 differential evo...

机构

  • 12 篇 de montfort univ...
  • 7 篇 huaibei normal u...
  • 7 篇 oklahoma state u...
  • 6 篇 huaibei normal u...
  • 5 篇 yanshan univ key...
  • 5 篇 east china univ ...
  • 4 篇 xiangtan univ ke...
  • 4 篇 beijing univ tec...
  • 4 篇 xiangtan univ sc...
  • 4 篇 hengyang normal ...
  • 4 篇 city univ hong k...
  • 4 篇 xiamen univ sch ...
  • 3 篇 tiangong univ sc...
  • 3 篇 hunan univ sci &...
  • 3 篇 southern univ sc...
  • 3 篇 hefei comprehens...
  • 3 篇 nanjing univ sta...
  • 3 篇 zhengzhou univ l...
  • 3 篇 anhui engn res c...
  • 3 篇 univ surrey dept...

作者

  • 18 篇 yang shengxiang
  • 13 篇 zou juan
  • 13 篇 zheng jinhua
  • 11 篇 hu yaru
  • 9 篇 chen debao
  • 9 篇 ou junwei
  • 7 篇 sun hao
  • 7 篇 yen gary g.
  • 7 篇 hu ziyu
  • 6 篇 wei lixin
  • 6 篇 ruan gan
  • 6 篇 liu ruochen
  • 6 篇 zou feng
  • 6 篇 ma yongjie
  • 6 篇 zhang xi
  • 5 篇 jiang min
  • 5 篇 yao xin
  • 5 篇 jin yaochu
  • 5 篇 ge fangzhen
  • 4 篇 gong dunwei

语言

  • 181 篇 英文
  • 4 篇 其他
  • 1 篇 中文
检索条件"主题词=Dynamic Multi-objective optimization"
187 条 记 录,以下是81-90 订阅
排序:
A dynamic multi-objective optimization evolutionary algorithm for complex environmental changes
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2021年 216卷 106612-106612页
作者: Liu, Ruochen Yang, Ping Liu, Jiangdi Xidian Univ Lab Intelligent Percept & Image Understanding Minist Educ Xian 710071 Peoples R China
dynamic multi-objective optimization problems (DMOPs) have attracted more and more research in the field of evolutionary computation community in recent years. Unlike most existing approaches just for solving a single... 详细信息
来源: 评论
Enhancing dynamic multi-objective optimization Using Opposition-based Learning and Simulated Annealing
收藏 引用
INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS 2023年 第4期32卷 2350037-2350037页
作者: Ilyas, Kiran Younas, Irfan Univ Management & Technol Sch Syst & Technol Lahore 54000 Pakistan Natl Univ Comp & Emerging Sci FAST Sch Comp Lahore 54000 Pakistan
There are many dynamic real-life optimization problems in which objectives increase or decrease over time, which usually leads to variations in the dimensions of a Pareto front. dynamic multi-objective optimization (D... 详细信息
来源: 评论
Temporal distribution-based prediction strategy for dynamic multi-objective optimization assisted by GRU neural network
收藏 引用
INFORMATION SCIENCES 2023年 第1期649卷
作者: Hou, Xing Ge, Fangzhen Chen, Debao Shen, Longfeng Zou, Feng Huaibei Normal Univ Sch Comp Sci & Technol Huaibei 235000 Peoples R China Anhui Engn Res Ctr Intelligent Comp & Applicat Cog Huaibei 235000 Anhui Peoples R China Hefei Comprehens Natl Sci Ctr Inst Artificial Intelligence Hefei Peoples R China Huaibei Normal Univ Sch Phys & Elect Informat Huaibei 235000 Peoples R China Anhui Prov Key Lab Intelligent Comp & Applicat Huaibei 235000 Anhui Peoples R China
To solve dynamic multi-objective optimization problems, evolutionary algorithms must be capable of quickly and accurately tracking the changing Pareto front such that they can respond in a timely and effective manner ... 详细信息
来源: 评论
The IGD-based prediction strategy for dynamic multi-objective optimization
收藏 引用
SWARM AND EVOLUTIONARY COMPUTATION 2024年 91卷
作者: Hu, Yaru Peng, Jiankang Ou, Junwei Li, Yana Zheng, Jinhua Zou, Juan Jiang, Shouyong Yang, Shengxiang Li, Jun Xiangtan Univ Dept Comp Sci Coll Xiangtan 411105 Peoples R China Xiangtan Univ Cyberspace Secur Coll Xiangtan 411105 Peoples R China Cent South Univ Dept Automat Changsha Peoples R China Montfort Univ Ctr Computat Intelligence Sch Comp Sci & Informat Leicester LE1 9BH England Hunan Inst Engn Xiangtan 411105 Peoples R China
In recent years, an increasing number of prediction-based strategies have shown promising results in handling dynamic multi-objective optimization problems (DMOPs), and prediction models are also considered to be very... 详细信息
来源: 评论
A modular neural network-based population prediction strategy for evolutionary dynamic multi-objective optimization
收藏 引用
SWARM AND EVOLUTIONARY COMPUTATION 2021年 62卷
作者: Li, Sanyi Yang, Shengxiang Wang, Yanfeng Yue, Weichao Qiao, Junfei Zhengzhou Univ Light Ind Sch Elect & Informat Engn Zhengzhou 450002 Peoples R China Beijing Univ Technol Fac Informat Technol Beijing 100124 Peoples R China De Montfort Univ Sch Comp Sci & Informat Leicester LE1 9BH Leics England
This paper presents a novel population prediction algorithm based on modular neural network (PA-MNN) for handling dynamic multi-objective optimization. The proposed algorithm consists of three mechanisms. First, we se... 详细信息
来源: 评论
A new framework of change response for dynamic multi-objective optimization
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2024年 248卷
作者: Hu, Yaru Zou, Juan Zheng, Jinhua Jiang, Shouyong Yang, Shengxiang Xiangtan Univ Sch Comp Sci & Cyberspace Secur Xiangtan 411105 Peoples R China Cent South Univ Dept Automat Changsha 410083 Peoples R China De Montfort Univ Inst Artificial Intelligence Sch Comp Sci & Informat Leicester LE1 9BH England
Combining response strategies into multi -objective evolutionary algorithms (MOEAs) for dynamic multiobjective optimization problems (DMOPs) is very popular. However, most of them hardly focus on DMOPs via enhancing t... 详细信息
来源: 评论
A prediction strategy based on decision variable analysis for dynamic multi-objective optimization
收藏 引用
SWARM AND EVOLUTIONARY COMPUTATION 2021年 60卷
作者: Zheng, Jinhua Zhou, Yubing Zou, Juan Yang, Shengxiang Ou, Junwei Hu, Yaru Xiangtan Univ Key Lab Intelligent Comp & Informat Proc Minist Educ Xiangtan 411105 Hunan Peoples R China Hengyang Normal Univ Hunan Prov Key Lab Intelligent Informat Proc & Ap Hengyang 421002 Peoples R China De Montfort Univ Sch Comp Sci & Informat Leicester LE1 9BH Leics England
Many multi-objective optimization problems in reality are dynamic, requiring the optimization algorithm to quickly track the moving optima after the environment changes. Therefore, response strategies are often used i... 详细信息
来源: 评论
A two-level parallel decomposition-based artificial bee colony method for dynamic multi-objective optimization problems
收藏 引用
APPLIED SOFT COMPUTING 2023年 147卷
作者: Bai, Yuyang Zhang, Changsheng Bai, Weitong Northeastern Univ Dept Software Engn ShenYing St Shenyang 110102 Liaoning Peoples R China Tianjin Agr Bank China Dept R&D HaiTai St Tianjin 300380 Peoples R China
Many real-world multiple-objective optimization problems have objectives that change over time. These multiple-objective optimization problems are called dynamic multiple-objective optimization problems (DMOPs) and ha... 详细信息
来源: 评论
Scalable benchmarks and performance measures for dynamic multi-objective optimization
收藏 引用
APPLIED SOFT COMPUTING 2024年 159卷
作者: Sun, Baiqing Zhang, Changsheng Zhao, Haitong Yu, Zhang Northeastern Univ Dept Software Coll Shenyang 110819 Peoples R China Ningxia Inst Sci & Technol Shizuishan 753000 Ningxia Peoples R China Changshu Inst Technol Sch Comp Sci & Engn Changshu 215500 Peoples R China China Telecom Digital Intelligence Technol Co Ltd Beijing Peoples R China
dynamic multi -objective optimization problems (DMOPs) can be utilized to model certain real -world problems that have a dynamic nature. Algorithms for solving DMOPs can be evaluated and improved by comparing their pe... 详细信息
来源: 评论
A framework based on generational and environmental response strategies for dynamic multi-objective optimization
收藏 引用
APPLIED SOFT COMPUTING 2024年 152卷
作者: Li, Qingya Liu, Xiangzhi Wang, Fuqiang Wang, Shuai Zhang, Peng Wu, Xiaoming Southern Univ Sci & Technol Dept Comp Sci & Engn Guangdong Prov Key Lab Brain inspired Intelligent Shenzhen 518055 Peoples R China Qilu Univ Technol Shandong Acad Sci Shandong Comp Sci Ctr Natl Supercomp Ctr JinanShandong Prov Key Lab Com Jinan Shandong Peoples R China Qilu Univ Technol Shandong Acad Sci Biol Engn Technol Innovat Ctr Shandong Prov Heze Branch Jinan Shandong Peoples R China
Due to the dynamics and uncertainty of the dynamic multi-objective optimization problems (DMOPs), it is difficult for algorithms to find a satisfactory solution set before the next environmental change, especially for... 详细信息
来源: 评论