咨询与建议

限定检索结果

文献类型

  • 30 篇 期刊文献
  • 12 篇 会议

馆藏范围

  • 42 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 36 篇 工学
    • 22 篇 计算机科学与技术...
    • 7 篇 控制科学与工程
    • 4 篇 信息与通信工程
    • 4 篇 城乡规划学
    • 4 篇 软件工程
    • 3 篇 仪器科学与技术
    • 3 篇 电气工程
    • 3 篇 土木工程
    • 2 篇 机械工程
    • 2 篇 建筑学
    • 2 篇 交通运输工程
    • 2 篇 农业工程
    • 1 篇 光学工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 网络空间安全
  • 9 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
  • 8 篇 理学
    • 4 篇 数学
    • 2 篇 物理学
    • 2 篇 系统科学
    • 1 篇 地理学
    • 1 篇 统计学(可授理学、...
  • 2 篇 经济学
    • 2 篇 理论经济学
    • 1 篇 应用经济学
  • 1 篇 法学
    • 1 篇 政治学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...

主题

  • 42 篇 dynamic topic mo...
  • 5 篇 topic model
  • 5 篇 topic evolution
  • 3 篇 latent dirichlet...
  • 3 篇 unsupervised lea...
  • 2 篇 evolution
  • 2 篇 topic modeling
  • 2 篇 spatial-temporal...
  • 2 篇 community discov...
  • 2 篇 topic tracking
  • 2 篇 disease progress...
  • 2 篇 online social ne...
  • 2 篇 word2vec
  • 1 篇 global positioni...
  • 1 篇 cord-19
  • 1 篇 diversity regula...
  • 1 篇 vehicle dynamics
  • 1 篇 online word of m...
  • 1 篇 matrix factoriza...
  • 1 篇 mpi

机构

  • 2 篇 hefei univ techn...
  • 2 篇 natl univ def te...
  • 2 篇 renmin univ chin...
  • 2 篇 电子科技大学
  • 2 篇 renmin univ chin...
  • 1 篇 wuhan univ sch i...
  • 1 篇 hebei software i...
  • 1 篇 tsinghua univ sc...
  • 1 篇 univ southern qu...
  • 1 篇 institutes of sc...
  • 1 篇 chinese acad sci...
  • 1 篇 paulson school o...
  • 1 篇 sun yat sen univ...
  • 1 篇 kunming univ sci...
  • 1 篇 academy of mathe...
  • 1 篇 seoul digital fd...
  • 1 篇 harvard univ pau...
  • 1 篇 sorbonne univ f-...
  • 1 篇 new jersey inst ...
  • 1 篇 natl engn lab bi...

作者

  • 3 篇 sun hao
  • 2 篇 秦志光
  • 2 篇 jiang yuanchun
  • 2 篇 liu yezheng
  • 2 篇 zhou rui
  • 2 篇 zhu jun
  • 2 篇 wang feifei
  • 2 篇 lu xiaoling
  • 2 篇 黄嘉
  • 2 篇 sun jianshan
  • 2 篇 qian yang
  • 2 篇 guo jun
  • 2 篇 zhu chang-ren
  • 2 篇 毕娟
  • 1 篇 zhou peng
  • 1 篇 hong yu
  • 1 篇 livermore michae...
  • 1 篇 feng yichao
  • 1 篇 yijun liu
  • 1 篇 ye zhiwen

语言

  • 40 篇 英文
  • 2 篇 其他
检索条件"主题词=Dynamic Topic Model"
42 条 记 录,以下是1-10 订阅
排序:
Sparse dynamic topic model with topic birth and death over time
收藏 引用
KNOWLEDGE AND INFORMATION SYSTEMS 2025年 第6期67卷 5019-5041页
作者: Zhou, Rui Wang, Feifei Liu, Chang Lu, Xiaoling Renmin Univ China Ctr Appl Stat Beijing Peoples R China Renmin Univ China Sch Stat Beijing Peoples R China Renmin Univ China Innovat Platform Beijing 100872 Peoples R China Agr Dev Bank China Beijing Peoples R China
Over the past twenty years, topic modeling has gradually become popular as a powerful tool, extracting useful and meaningful latent representations from large texts. Research on topic evolution, focusing on the repres... 详细信息
来源: 评论
Bayesian sparse joint dynamic topic model with flexible lead-lag order
收藏 引用
INFORMATION SCIENCES 2022年 616卷 392-410页
作者: Wang, Feifei Zhou, Rui Feng, Yichao Lu, Xiaoling Renmin Univ China Ctr Appl Stat Beijing Peoples R China Renmin Univ China Sch Stat Beijing Peoples R China JD Hlth Int Inc Beijing Peoples R China
Currently, text documents from multiple sources have become available in many fields. It is of great interest to study the relationship between documents from different sources and uncover the underlying causality. Zh... 详细信息
来源: 评论
Semantic-enhanced topic evolution analysis: a combination of the dynamic topic model and word2vec
收藏 引用
SCIENTOMETRICS 2022年 第3期127卷 1543-1563页
作者: Gao, Qiang Huang, Xiao Dong, Ke Liang, Zhentao Wu, Jiang Wuhan Univ Sch Informat Management 299 Bayi Rd Wuhan 430072 Peoples R China Wuhan Univ Ctr Studies Informat Resources 299 Bayi Rd Wuhan 430072 Peoples R China
The combination of the topic model and the semantic method can help to discover the semantic distributions of topics and the changing characteristics of the semantic distributions, further providing a new perspective ... 详细信息
来源: 评论
dynamic topic model for Tracking topic Evolution and Measuring Popularity of Scientific Literature  6
Dynamic Topic Model for Tracking Topic Evolution and Measuri...
收藏 引用
6th IEEE International Conference on Data Science in Cyberspace, DSC 2021
作者: Liu, Yezheng Wang, Jicheng Qian, Yang Jiang, Yuanchun Sun, Jianshan Chai, Yidong School Of Management Hefei University Of Technology China
With the progress of science and technology, a large number of scientific papers are published every year. Faced with such large data, identifying high-value research and hot research directions has become an interest... 详细信息
来源: 评论
Tracking urban geo-topics based on dynamic topic model
收藏 引用
COMPUTERS ENVIRONMENT AND URBAN SYSTEMS 2020年 79卷 101419-000页
作者: Yao, Fang Wang, Yan Univ Florida Dept Urban & Reg Planning Coll Design Construct & Planning 1480 Inner Rd Gainesville FL 32601 USA Univ Florida Dept Urban & Reg Planning POB 115706 Gainesville FL 32611 USA Univ Florida Florida Inst Built Environm Resilience POB 115706 Gainesville FL 32611 USA
Modern cities are facing critical environmental and social problems that are difficult to solve using conventional planning approaches due to the cities' magnitude and complexity. Recent developments in sensing te... 详细信息
来源: 评论
Forecasting Financial Market Volatility Using a dynamic topic model
收藏 引用
ASIA-PACIFIC FINANCIAL MARKETS 2017年 第3期24卷 149-167页
作者: Morimoto, Takayuki Kawasaki, Yoshinori Kwansei Gakuin Univ Dept Math Sci 2-1 Gakuen Sanda Hyogo 6691337 Japan Inst Stat Math Dept Stat Modeling 10-3 Midori Cho Tachikawa Tokyo 1908562 Japan SOKENDAI 10-3 Midori Cho Tachikawa Tokyo 1908562 Japan
This study employs big data and text data mining techniques to forecast financial market volatility. We incorporate financial information from online news sources into time series volatility models. We categorize a to... 详细信息
来源: 评论
Method for Extraction of Purchase Behavior and Product Character Using dynamic topic model  16
Method for Extraction of Purchase Behavior and Product Chara...
收藏 引用
16th IEEE International Conference on Data Mining (ICDM)
作者: Emoto, Mamoru Univ Tokyo Sch Engn Tokyo 1138654 Japan
In this study, we focus on extraction of latent topic transition from POS data. POS analysis is conducted to obtain the frequent pattern of customer ' s behavior. The fundamental method for POS analysis is to cond... 详细信息
来源: 评论
dynamic Dual Sparse topic model: Integrating Temporal dynamics and Sparsity with Spike and Slab Priors into topic model  16
Dynamic Dual Sparse Topic Model: Integrating Temporal Dynami...
收藏 引用
16th IIAI International Congress on Advanced Applied Informatics, IIAI-AAI 2024
作者: Masuda, Tatsuki Nakagawa, Kei Hoshino, Takahiro Graduate School of Economics Keio University Riken Center for Aip Tokyo Japan Nomura Asset Management Co. Ltd. Osaka Metropolitan University Innovation Lab Tokyo Japan Riken Center for Aip Keio University Faculty of Economics Tokyo Japan
topic modeling is a statistical technique that identifies underlying abstract 'topics' in a corpus of texts. Notable among current topic modeling methodologies are the dynamic topic model (DTM), which captures... 详细信息
来源: 评论
dynamic topic modelling for exploring the scientific literature on coronavirus: an unsupervised labelling technique
收藏 引用
INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS 2024年 1-31页
作者: Guillen-Pacho, Ibai Badenes-Olmedo, Carlos Corcho, Oscar Univ Politecn Madrid Ontol Engn Grp Madrid Spain Univ Politecn Madrid Comp Sci Dept Madrid Spain
The work presented in this article focusses on improving the interpretability of probabilistic topic models created from a large collection of scientific documents that evolve over time. Several time-dependent approac... 详细信息
来源: 评论
Image sequence analysis using dynamic topic models  33
Image sequence analysis using Dynamic Topic Models
收藏 引用
Conference on Signal Processing, Sensor/Information Fusion, and Target Recognition XXXIII
作者: Bhatia, Amit Bomberger, Neil BAE Syst 4721 Emperor Blvd Durham NC 27703 USA BAE Syst 11091 Sunset Hills Rd Reston VA 20190 USA
A topic model is a probabilistic method for data analysis and characterization that provides insight into the topics that comprise each document in a corpus, where each topic is described by an associated word distrib... 详细信息
来源: 评论