Coordinating a mobile sensor team (MST) to cover targets is a challenging problem in many multiagent applications. Such applications are inherently dynamic due to changes in the environment, technology failures, and i...
详细信息
Coordinating a mobile sensor team (MST) to cover targets is a challenging problem in many multiagent applications. Such applications are inherently dynamic due to changes in the environment, technology failures, and incomplete knowledge of the agents. Agents must adaptively respond by changing their locations to continually optimize the coverage of targets. We propose distributed constraint optimization problems (DCOP)_MST, a new model for representing MST problems that is based on DCOP. In DCOP_MST, agents maintain variables for their physical positions, while each target is represented by a constraint that reflects the quality of coverage of that target. In contrast to conventional, static DCOPs, DCOP_MST not only permits dynamism but exploits it by restricting variable domains to nearby locations;consequently, variable domains and constraints change as the agents move through the environment. DCOP_MST confers three major advantages. It directly represents the multiple forms of dynamism inherent in MSTs. It also provides a compact representation that can be solved efficiently with local search algorithms, with information and communication locality based on physical locality as typically occurs in MST applications. Finally, DCOP_MST facilitates organization of the team into multiple sub-teams that can specialize in different roles and coordinate their activity through dynamic events. We demonstrate how a search-and-detection team responsible for finding new targets and a surveillance sub-team tasked with coverage of known targets can effectively work together to improve performance while using the DCOP_MST framework to coordinate. We propose different algorithms to meet the specific needs of each sub-team and several methods for cooperation between sub-teams. For the search-and-detection team, we develop an algorithm based on the DSA that forces intensive exploration for new targets. For the surveillance sub-team, we adapt several incomplete DCOP algorithms, inclu
暂无评论