咨询与建议

限定检索结果

文献类型

  • 3 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 6 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 6 篇 工学
    • 6 篇 计算机科学与技术...
    • 1 篇 电气工程
  • 1 篇 理学
    • 1 篇 生物学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 6 篇 dynamic multi-ob...
  • 2 篇 feature drift
  • 2 篇 resource failure...
  • 2 篇 dynamic multi-ob...
  • 2 篇 workflow schedul...
  • 1 篇 classification o...
  • 1 篇 non-dominated so...
  • 1 篇 neural networks
  • 1 篇 filter-based fea...
  • 1 篇 changing number ...
  • 1 篇 memory-based alg...
  • 1 篇 severity of chan...
  • 1 篇 characterization...
  • 1 篇 change detection
  • 1 篇 type detection
  • 1 篇 learning in non-...

机构

  • 2 篇 marmara univ com...
  • 1 篇 marmara univ dep...
  • 1 篇 marmara univ fac...
  • 1 篇 marmara univ dep...
  • 1 篇 marmara univ com...
  • 1 篇 fatih sultan meh...

作者

  • 6 篇 topcuoglu haluk ...
  • 4 篇 sahmoud shaaban
  • 2 篇 ismayilov goshga...

语言

  • 6 篇 英文
检索条件"主题词=Dynamic multi-objective evolutionary algorithms"
6 条 记 录,以下是1-10 订阅
排序:
A general framework based on dynamic multi-objective evolutionary algorithms for handling feature drifts on data streams
收藏 引用
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE 2020年 102卷 42-52页
作者: Sahmoud, Shaaban Topcuoglu, Haluk Rahmi Marmara Univ Dept Comp Engn TR-34722 Istanbul Turkey
This paper proposes a new and efficient framework to deal with the classification of data streams when exhibiting feature drifts. The first building block of the framework is a dynamic multi-objective evolutionary alg... 详细信息
来源: 评论
Exploiting characterization of dynamism for enhancing dynamic multi-objective evolutionary algorithms
收藏 引用
APPLIED SOFT COMPUTING 2019年 85卷 105783-000页
作者: Sahmoud, Shaaban Topcuoglu, Haluk Rahmi Marmara Univ Fac Engn Comp Engn Dept TR-34722 Istanbul Turkey
Characterization of dynamism is an essential phase for some of the dynamic multi-objective evolutionary algorithms (DMOEAs) in order to improve their performance. Although frequency of change and severity of change ar... 详细信息
来源: 评论
dynamic multi-objective Workflow Scheduling for Cloud Computing Based on evolutionary algorithms  11
Dynamic Multi-Objective Workflow Scheduling for Cloud Comput...
收藏 引用
11th IEEE/ACM International Conference on Utility and Cloud Computing (UCC-Companion) / 5th IEEE/ACM International Conference on Big Data Computing, Applications and Technologies (BDCAT)
作者: Ismayilov, Goshgar Topcuoglu, Haluk Rahmi Marmara Univ Dept Comp Engn Istanbul Turkey
Cloud computing is a dominant heterogeneous and distributed system, that offers on-demand resource capacity for different requirements of customers. Cloud workflow scheduling is a largely studied research area that ta... 详细信息
来源: 评论
Neural network based multi-objective evolutionary algorithm for dynamic workflow scheduling in cloud computing
收藏 引用
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE 2020年 102卷 307-322页
作者: Ismayilov, Goshgar Topcuoglu, Haluk Rahmi Marmara Univ Comp Engn Dept TR-34722 Istanbul Turkey
Workflow scheduling is a largely studied research topic in cloud computing, which targets to utilize cloud resources for workflow tasks by considering the objectives specified in QoS. In this paper, we model dynamic w... 详细信息
来源: 评论
A Type Detection Based dynamic multi-objective evolutionary Algorithm  21st
A Type Detection Based Dynamic Multi-objective Evolutionary ...
收藏 引用
21st International Conference on the Applications of evolutionary Computation (EvoApplications)
作者: Sahmoud, Shaaban Topcuoglu, Haluk Rahmi Marmara Univ Comp Engn Dept TR-34722 Istanbul Turkey
Characterization of dynamism is an important issue for utilizing or tailoring of several dynamic multi-objective evolutionary algorithms (DMOEAs). One such characterization is the change detection, which is based on p... 详细信息
来源: 评论
Memory-Assisted dynamic multi-objective evolutionary Algorithm for Feature Drift Problem
Memory-Assisted Dynamic Multi-Objective Evolutionary Algorit...
收藏 引用
IEEE Congress on evolutionary Computation (CEC) as part of the IEEE World Congress on Computational Intelligence (IEEE WCCI)
作者: Sahmoud, Shaaban Topcuoglu, Haluk Rahmi Fatih Sultan Mehmet Vakif Univ Comp Engn Dept Istanbul Turkey Marmara Univ Comp Engn Dept Istanbul Turkey
In this paper, we propose an enhanced feature selection algorithm able to cope with feature drift problem that may occur in data streams, where the set of relevant features change over time. We utilize a dynamic multi... 详细信息
来源: 评论