咨询与建议

限定检索结果

文献类型

  • 141 篇 期刊文献
  • 44 篇 会议

馆藏范围

  • 185 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 181 篇 工学
    • 150 篇 计算机科学与技术...
    • 35 篇 电气工程
    • 17 篇 控制科学与工程
    • 9 篇 信息与通信工程
    • 8 篇 化学工程与技术
    • 7 篇 石油与天然气工程
    • 7 篇 软件工程
    • 6 篇 动力工程及工程热...
    • 4 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 交通运输工程
    • 2 篇 冶金工程
    • 2 篇 土木工程
    • 2 篇 船舶与海洋工程
    • 1 篇 光学工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 航空宇航科学与技...
    • 1 篇 环境科学与工程(可...
    • 1 篇 食品科学与工程(可...
  • 47 篇 管理学
    • 47 篇 管理科学与工程(可...
  • 19 篇 理学
    • 10 篇 生物学
    • 6 篇 数学
    • 2 篇 物理学
    • 2 篇 化学
    • 1 篇 海洋科学
    • 1 篇 统计学(可授理学、...
  • 1 篇 法学
    • 1 篇 法学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 185 篇 dynamic multi-ob...
  • 33 篇 evolutionary alg...
  • 22 篇 prediction
  • 22 篇 evolutionary alg...
  • 19 篇 transfer learnin...
  • 7 篇 decomposition
  • 6 篇 optimization
  • 5 篇 memory
  • 4 篇 dynamic optimiza...
  • 4 篇 diversity
  • 4 篇 prediction strat...
  • 4 篇 particle swarm o...
  • 4 篇 local search
  • 4 篇 evolutionary com...
  • 3 篇 simulation
  • 3 篇 high speed railw...
  • 3 篇 support vector m...
  • 3 篇 constrained opti...
  • 3 篇 convergence
  • 3 篇 differential evo...

机构

  • 12 篇 de montfort univ...
  • 7 篇 huaibei normal u...
  • 7 篇 oklahoma state u...
  • 6 篇 huaibei normal u...
  • 5 篇 yanshan univ key...
  • 5 篇 east china univ ...
  • 4 篇 xiangtan univ ke...
  • 4 篇 beijing univ tec...
  • 4 篇 xiangtan univ sc...
  • 4 篇 hengyang normal ...
  • 4 篇 city univ hong k...
  • 4 篇 xiamen univ sch ...
  • 3 篇 tiangong univ sc...
  • 3 篇 hunan univ sci &...
  • 3 篇 southern univ sc...
  • 3 篇 hefei comprehens...
  • 3 篇 nanjing univ sta...
  • 3 篇 zhengzhou univ l...
  • 3 篇 anhui engn res c...
  • 3 篇 univ surrey dept...

作者

  • 18 篇 yang shengxiang
  • 13 篇 zou juan
  • 13 篇 zheng jinhua
  • 11 篇 hu yaru
  • 9 篇 chen debao
  • 9 篇 ou junwei
  • 7 篇 sun hao
  • 7 篇 yen gary g.
  • 7 篇 hu ziyu
  • 6 篇 wei lixin
  • 6 篇 ruan gan
  • 6 篇 liu ruochen
  • 6 篇 zou feng
  • 6 篇 ma yongjie
  • 6 篇 zhang xi
  • 5 篇 jiang min
  • 5 篇 yao xin
  • 5 篇 jin yaochu
  • 5 篇 ge fangzhen
  • 4 篇 gong dunwei

语言

  • 179 篇 英文
  • 5 篇 其他
  • 1 篇 中文
检索条件"主题词=Dynamic multi-objective optimization"
185 条 记 录,以下是1-10 订阅
排序:
dynamic multi-objective optimization method for production index of cement clinker firing process based on collaborative prediction strategy
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2025年 151卷
作者: Liu, Gang Xie, Shangjian Hao, Xiaochen Yang, Mengke Yang, Xunian Xu, Xingxing Guo, Huan Yanshan Univ Sch Elect Engn Qinhuangdao 066004 Peoples R China
The cement clinker firing system is complex, with interdependent indicators, making it challenging to optimize decision-making. Furthermore, the traditional static single-objective or multi-objective optimization meth... 详细信息
来源: 评论
multi-high-Q Terahertz biosensors based on a dynamic multi-objective optimization strategy
收藏 引用
OPTICS AND LASER TECHNOLOGY 2025年 183卷
作者: Li, Chun Chen, Haonan Zhu, Yifan Wang, Tengyu Teng, Yan Liang, Lanju Zhang, Yonggang Yao, Haiyun Huang, Zhengwei Jiang, Ling Nanjing Forestry Univ Coll Informat Sci & Technol Nanjing 210037 Peoples R China Zaozhuang Univ Sch Optoelect Engn Zaozhuang 277160 Peoples R China Anhui Univ Sci & Technol Sch Elect & Informat Engn Huainan 232001 Anhui Peoples R China
Terahertz metamaterial sensors (TMS) playa key role in the highly sensitive detection of trace substances, especially in label-free, real-time, and in-situ measurements for disease, microbial, and pesticide residue di... 详细信息
来源: 评论
A dynamic multi-objective optimization algorithm based on probability-driven prediction and correlation-guided individual transfer
收藏 引用
JOURNAL OF SUPERCOMPUTING 2025年 第1期81卷 1-47页
作者: Ge, Fangzhen Zhao, Xuan Chen, Debao Shen, Longfeng Liu, Huaiyu Huaibei Normal Univ Sch Comp Sci & Technol Huaibei 235000 Peoples R China Huaibei Normal Univ Anhui Engn Res Ctr Intelligent Comp & Applicat Cog Huaibei 235000 Peoples R China Hefei Comprehens Natl Sci Ctr Inst Artificial Intelligence Hefei Peoples R China Huaibei Normal Univ Sch Phys & Elect Informat Huaibei 235000 Peoples R China
The primary challenge in addressing dynamic multi-objective optimization problems (DMOPs) is the rapid tracking of optimal solutions. Although methods based on transfer learning have shown remarkable performance in ta... 详细信息
来源: 评论
A Power Control Algorithm for V2V Communication Networks Based on dynamic multi-objective optimization
收藏 引用
IEEE ACCESS 2025年 13卷 54823-54835页
作者: Ma, Mengyu Gu, Zihao Wang, Chao Li, Zuxing Hu, Jianyao Liu, Fuqiang Tongji Univ Dept Informat & Commun Engn Shanghai 201804 Peoples R China Minist Ind & Informat Technol Elect Res Inst 5 Guangzhou 510610 Peoples R China
Vehicular communication networks have the nature of high dynamics and consist of communication links with different or even conflicting transmission objectives and quality of service (QoS) requirements. Therefore, it ... 详细信息
来源: 评论
Twin-population multiple knowledge-guided transfer prediction framework for evolutionary dynamic multi-objective optimization
收藏 引用
APPLIED SOFT COMPUTING 2025年 175卷
作者: Zhao, Shijie Zhang, Tianran Chen, Miao Zhang, Lei Liaoning Tech Univ Inst Intelligence Sci & Optimizat Fuxin 123000 Peoples R China Liaoning Tech Univ Inst Optimizat & Decis Analyt Fuxin 123000 Peoples R China
dynamic multi-objective evolutionary algorithms (DMOEAs) have been widely studied, and one of the main tasks is the need for algorithms to track Pareto optimal front (POF) under dynamic environmental changes. Existing... 详细信息
来源: 评论
dynamic multi-objective optimization based on classification response of decision variables
收藏 引用
INFORMATION SCIENCES 2025年 691卷
作者: Li, Jianxia Liu, Ruochen Wang, Ruinan Xidian Univ Key Lab Intelligent Percept & Image Understanding Minist Educ Xian 710071 Shaanxi Peoples R China
In recent years, many dynamic multi-objective optimization algorithms (DMOAs) have been proposed to address dynamic multi-objective optimization problems (DMOPs). Most existing DMOAs treat all decision variables unifo... 详细信息
来源: 评论
A Special Points and Neural Network-Based dynamic multi-objective optimization Algorithm
收藏 引用
IEEE ACCESS 2025年 13卷 24765-24792页
作者: Li, Sanyi Hou, Wenjie Liu, Peng Yue, Weichao Wang, Qian Zhengzhou Univ Light Ind Sch Elect & Informat Engn Zhengzhou 450002 Peoples R China
This paper introduces a special points and neural network- based dynamic multi-objective optimization algorithm (SPNN-DMOA) for solving dynamic multi-objective optimization problems (DMOPs) with an irregularly changin... 详细信息
来源: 评论
Anew prediction strategy for dynamic multi-objective optimization using hybrid Fuzzy C-Means and support vector machine
收藏 引用
NEUROCOMPUTING 2025年 621卷
作者: Zhang, Tao Tao, Qing Yu, Linjun Yi, Haohao Chen, Jiawei Yangtze Univ Sch Informat & Math Jingzhou 434023 Peoples R China Southwest Univ Sch Math & Stat Chongqing 4007150 Peoples R China
A dynamic multi-objective optimization problem (DMOP) involves optimizing multiple conflicting objectives that change over time. It presents a significant challenge in rapidly adapting to evolving environments and tra... 详细信息
来源: 评论
A dynamic multi-objective optimization based on knowledge prediction and density clustering strategy
收藏 引用
APPLIED SOFT COMPUTING 2025年 175卷
作者: Wang, Yong Wang, Shengao Li, Kuichao Wang, Gai-Ge Ocean Univ China Sch Comp Sci & Technol Qingdao 266100 Peoples R China
dynamic multi-objective evolutionary algorithms (DMOEAs) that extract historical knowledge from the past environment to predict new solutions are known to be effective for solving dynamic multi-objective optimization ... 详细信息
来源: 评论
A dynamic multi-objective optimization evolutionary algorithm based on classification of environmental change intensity and collaborative prediction strategy
收藏 引用
JOURNAL OF SUPERCOMPUTING 2025年 第1期81卷 1-52页
作者: Wang, Yu Ma, Yongjie Li, Quanxiu Zhao, Yan Northwest Normal Univ Coll Phys & Elect Engn Lanzhou 730070 Peoples R China
The dynamic multi-objective optimization evolutionary algorithm (DMOEA) has garnered widespread attention due to its superiority in solving dynamic multi-objective optimization problems (DMOPs). Existing DMOEAs do not... 详细信息
来源: 评论