咨询与建议

限定检索结果

文献类型

  • 141 篇 期刊文献
  • 44 篇 会议

馆藏范围

  • 185 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 181 篇 工学
    • 150 篇 计算机科学与技术...
    • 35 篇 电气工程
    • 17 篇 控制科学与工程
    • 9 篇 信息与通信工程
    • 8 篇 化学工程与技术
    • 7 篇 石油与天然气工程
    • 7 篇 软件工程
    • 6 篇 动力工程及工程热...
    • 4 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 交通运输工程
    • 2 篇 冶金工程
    • 2 篇 土木工程
    • 2 篇 船舶与海洋工程
    • 1 篇 光学工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 航空宇航科学与技...
    • 1 篇 环境科学与工程(可...
    • 1 篇 食品科学与工程(可...
  • 47 篇 管理学
    • 47 篇 管理科学与工程(可...
  • 19 篇 理学
    • 10 篇 生物学
    • 6 篇 数学
    • 2 篇 物理学
    • 2 篇 化学
    • 1 篇 海洋科学
    • 1 篇 统计学(可授理学、...
  • 1 篇 法学
    • 1 篇 法学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 185 篇 dynamic multi-ob...
  • 33 篇 evolutionary alg...
  • 22 篇 prediction
  • 22 篇 evolutionary alg...
  • 19 篇 transfer learnin...
  • 7 篇 decomposition
  • 6 篇 optimization
  • 5 篇 memory
  • 4 篇 dynamic optimiza...
  • 4 篇 diversity
  • 4 篇 prediction strat...
  • 4 篇 particle swarm o...
  • 4 篇 local search
  • 4 篇 evolutionary com...
  • 3 篇 simulation
  • 3 篇 high speed railw...
  • 3 篇 support vector m...
  • 3 篇 constrained opti...
  • 3 篇 convergence
  • 3 篇 differential evo...

机构

  • 12 篇 de montfort univ...
  • 7 篇 huaibei normal u...
  • 7 篇 oklahoma state u...
  • 6 篇 huaibei normal u...
  • 5 篇 yanshan univ key...
  • 5 篇 east china univ ...
  • 4 篇 xiangtan univ ke...
  • 4 篇 beijing univ tec...
  • 4 篇 xiangtan univ sc...
  • 4 篇 hengyang normal ...
  • 4 篇 city univ hong k...
  • 4 篇 xiamen univ sch ...
  • 3 篇 tiangong univ sc...
  • 3 篇 hunan univ sci &...
  • 3 篇 southern univ sc...
  • 3 篇 hefei comprehens...
  • 3 篇 nanjing univ sta...
  • 3 篇 zhengzhou univ l...
  • 3 篇 anhui engn res c...
  • 3 篇 univ surrey dept...

作者

  • 18 篇 yang shengxiang
  • 13 篇 zou juan
  • 13 篇 zheng jinhua
  • 11 篇 hu yaru
  • 9 篇 chen debao
  • 9 篇 ou junwei
  • 7 篇 sun hao
  • 7 篇 yen gary g.
  • 7 篇 hu ziyu
  • 6 篇 wei lixin
  • 6 篇 ruan gan
  • 6 篇 liu ruochen
  • 6 篇 zou feng
  • 6 篇 ma yongjie
  • 6 篇 zhang xi
  • 5 篇 jiang min
  • 5 篇 yao xin
  • 5 篇 jin yaochu
  • 5 篇 ge fangzhen
  • 4 篇 gong dunwei

语言

  • 179 篇 英文
  • 5 篇 其他
  • 1 篇 中文
检索条件"主题词=Dynamic multi-objective optimization"
185 条 记 录,以下是71-80 订阅
排序:
A Joint Prediction Strategy Based on multiple Feature Points for dynamic multi-objective optimization  15th
A Joint Prediction Strategy Based on Multiple Feature Points...
收藏 引用
15th International Conference on Advances in Swarm Intelligence (ICSI)
作者: Li, Yaxin Yan, Li Yu, Kunjie Liang, Jing Qu, Boyang Zhongyuan Univ Technol Zhengzhou Peoples R China Zhengzhou Univ Zhengzhou Peoples R China
This paper proposes a joint prediction strategy based on multiple feature points (JP-MFP) to improve the prediction accuracy and balance the convergence and diversity. On the one hand, a multi-step prediction based on... 详细信息
来源: 评论
Cooperative Co-evolutionary Algorithm for dynamic multi-objective optimization Based on Environmental Variable Grouping
Cooperative Co-evolutionary Algorithm for Dynamic Multi-obje...
收藏 引用
7th International Conference on Swarm Intelligence (ICSI)
作者: Xu, Biao Zhang, Yong Gong, Dunwei Rong, Miao China Univ Min & Technol Sch Informat & Elect Engn Xuzhou 221116 Peoples R China Huaibei Normal Univ Sch Math & Sci Huaibei 235000 Peoples R China
This paper presents a cooperative co-evolutionary dynamic multi-objective optimization algorithm, i.e., DNSGAII-CO for solving DMOPs based on environmental variable grouping. In this algorithm, a new method of groupin... 详细信息
来源: 评论
Elitism-based transfer learning and diversity maintenance for dynamic multi-objective optimization
收藏 引用
INFORMATION SCIENCES 2023年 第1期636卷
作者: Zhang, Xi Yu, Guo Jin, Yaochu Qian, Feng East China Univ Sci & Technol Key Lab Smart Mfg Energy Chem Proc Shanghai 200237 Peoples R China Nanjing Tech Univ Inst Intelligent Mfg Nanjing 211816 Peoples R China Bielefeld Univ Fac Technol Chair Nat Inspired Comp & Engn D-33619 Bielefeld Germany Univ Surrey Dept Comp Sci Guildford GU2 7XH Surrey England
In handling dynamic multi-objective optimization problems (DMOPs), transfer learning driven methods have received considerable attention for finding a high-quality initial population with good convergence and diversit... 详细信息
来源: 评论
An immune inspired multi-agent system for dynamic multi-objective optimization
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2023年 第1期262卷
作者: Kamali, Seyed Ruhollah Banirostam, Touraj Motameni, Homayun Teshnehlab, Mohammad Islamic Azad Univ Dept Comp Engn Cent Tehran Branch Tehran Iran Islamic Azad Univ Dept Comp Engn Sari Branch Sari Iran K N Toosi Univ Technol Elect & Comp Engn Tehran Iran
In this research, an immune inspired multi-agent system (IMAS) is proposed to solve optimization problems in dynamic and multi-objective environments. The proposed IMAS uses artificial immune system metaphors to shape... 详细信息
来源: 评论
A novel predictive method based on key points for dynamic multi-objective optimization
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2022年 第0期190卷 116127-116127页
作者: Wang, Chunfeng Yen, Gary G. Zou, Fei Xianyang Normal Univ Sch Math & Stat Xianyang 712000 Peoples R China Oklahoma State Univ Sch Elect & Comp Engn Stillwater OK 74078 USA Shenyang Univ Technol Sch Artificial Intelligence Shenyang 110870 Peoples R China
dynamic multi-objective problem is very difficult to be solved because of the variability of the objective function with time. To overcome the difficult caused by such variability, a predictive method utilizing some k... 详细信息
来源: 评论
A dynamic multi-objective optimization evolutionary algorithm based on particle swarm prediction strategy and prediction adjustment strategy
收藏 引用
SWARM AND EVOLUTIONARY COMPUTATION 2022年 第0期75卷
作者: Wang, Peidi Ma, Yongjie Wang, Minghao Northwest Normal Univ Sch Phys & Elect Engn Lanzhou 730070 Gansu Peoples R China
dynamic multi-objective optimization Evolutionary Algorithm (DMOEA) is a promising approach for solving dynamic multi-objective optimization Problems (DMOPs), which has attracted extensive attention owing to its wide ... 详细信息
来源: 评论
A dynamic multi-objective optimization based on a hybrid of pivot points prediction and diversity strategies
收藏 引用
SWARM AND EVOLUTIONARY COMPUTATION 2023年 78卷
作者: Zheng, Jinhua Zhou, Fei Zou, Juan Yang, Shengxiang Hu, Yaru Xiangtan Univ Sch Comp Sci Key Lab Intelligent Comp & Informat Proc Minist Educ Xiangtan Hunan Peoples R China Xiangtan Univ Sch Cyberspace Sci Xiangtan Hunan Peoples R China Xiangtan Univ Fac Sch Comp Sci Xiangtan 411105 Peoples R China Xiangtan Univ Sch Cyberspace Sci Xiangtan 411105 Peoples R China Xiangtan Univ Dept Math & Computat Sci Xiangtan 411105 Peoples R China Hunan Prov Key Lab Intelligent Informat Proc & App Hengyang 421002 Peoples R China De Montfort Univ Sch Comp Sci & Informat Leicester LE1 9BH England
There are many dynamic multi-objective optimization problems (DMOPs) in real-world applications. The Pareto-optimal front (PF) or Pareto-optimal set (PS) of such problems will change with the optimization process, pos... 详细信息
来源: 评论
Hybrid response dynamic multi-objective optimization algorithm based on multi-arm bandit model
收藏 引用
INFORMATION SCIENCES 2024年 681卷
作者: Hu, Xiaolin Wu, Lingyu Han, Mingzhang Zhao, Xinchao Sang, Xinzhu Beijing Univ Posts & Telecommun Sch Sci Beijing 100876 Peoples R China Beijing Univ Posts & Telecommun Key Lab Math & Informat Networks Beijing 100876 Peoples R China Beijing Univ Posts & Telecommun State Key Lab Informat Photon & Opt Commun Beijing 100876 Peoples R China
dynamic multi-objective optimization is a relatively challenging problem within the field of multi objective optimization. Nevertheless, these problems have significant real-world applications. The key to addressing d... 详细信息
来源: 评论
A dynamic multi-objective optimization evolutionary algorithm for complex environmental changes
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2021年 216卷 106612-106612页
作者: Liu, Ruochen Yang, Ping Liu, Jiangdi Xidian Univ Lab Intelligent Percept & Image Understanding Minist Educ Xian 710071 Peoples R China
dynamic multi-objective optimization problems (DMOPs) have attracted more and more research in the field of evolutionary computation community in recent years. Unlike most existing approaches just for solving a single... 详细信息
来源: 评论
Enhancing dynamic multi-objective optimization Using Opposition-based Learning and Simulated Annealing
收藏 引用
INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS 2023年 第4期32卷 2350037-2350037页
作者: Ilyas, Kiran Younas, Irfan Univ Management & Technol Sch Syst & Technol Lahore 54000 Pakistan Natl Univ Comp & Emerging Sci FAST Sch Comp Lahore 54000 Pakistan
There are many dynamic real-life optimization problems in which objectives increase or decrease over time, which usually leads to variations in the dimensions of a Pareto front. dynamic multi-objective optimization (D... 详细信息
来源: 评论