咨询与建议

限定检索结果

文献类型

  • 75 篇 期刊文献
  • 13 篇 会议

馆藏范围

  • 88 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 86 篇 工学
    • 77 篇 计算机科学与技术...
    • 36 篇 电气工程
    • 17 篇 控制科学与工程
    • 2 篇 仪器科学与技术
    • 2 篇 信息与通信工程
    • 2 篇 船舶与海洋工程
    • 2 篇 软件工程
    • 1 篇 土木工程
    • 1 篇 环境科学与工程(可...
  • 13 篇 管理学
    • 13 篇 管理科学与工程(可...
  • 8 篇 理学
    • 4 篇 生物学
    • 2 篇 数学
    • 2 篇 海洋科学

主题

  • 88 篇 dynamic multiobj...
  • 20 篇 evolutionary alg...
  • 17 篇 prediction
  • 16 篇 optimization
  • 14 篇 sociology
  • 11 篇 statistics
  • 11 篇 heuristic algori...
  • 9 篇 evolutionary alg...
  • 7 篇 transfer learnin...
  • 7 篇 convergence
  • 7 篇 evolutionary com...
  • 6 篇 prediction algor...
  • 5 篇 predictive model...
  • 5 篇 change detection
  • 4 篇 optical fibers
  • 4 篇 knowledge transf...
  • 3 篇 maintenance engi...
  • 3 篇 inverse model
  • 3 篇 evolutionary alg...
  • 3 篇 manifolds

机构

  • 5 篇 china univ min &...
  • 5 篇 qingdao univ sci...
  • 4 篇 hong kong polyte...
  • 4 篇 natl univ singap...
  • 4 篇 northeastern uni...
  • 4 篇 city univ hong k...
  • 4 篇 xiamen univ sch ...
  • 4 篇 de montfort univ...
  • 4 篇 xiamen univ dept...
  • 3 篇 beijing univ tec...
  • 3 篇 michigan state u...
  • 3 篇 oklahoma state u...
  • 3 篇 zhengzhou univ s...
  • 3 篇 xiamen univ fuji...
  • 3 篇 univ surrey dept...
  • 3 篇 yanshan univ min...
  • 3 篇 ocean univ china...
  • 3 篇 tangshan univ de...
  • 3 篇 shenzhen univ co...
  • 2 篇 college of compu...

作者

  • 11 篇 yang shengxiang
  • 10 篇 tan kay chen
  • 9 篇 jiang min
  • 7 篇 gong dunwei
  • 6 篇 jin yaochu
  • 6 篇 zheng jinhua
  • 5 篇 zou juan
  • 5 篇 sun hao
  • 4 篇 ding jinliang
  • 4 篇 cao anran
  • 4 篇 liang jing
  • 4 篇 hu ziyu
  • 3 篇 xu lihong
  • 3 篇 li xiaoli
  • 3 篇 pedrycz witold
  • 3 篇 guo yinan
  • 3 篇 liu ruochen
  • 3 篇 jiao licheng
  • 3 篇 qu boyang
  • 3 篇 chai tianyou

语言

  • 87 篇 英文
  • 1 篇 其他
检索条件"主题词=Dynamic multiobjective optimization"
88 条 记 录,以下是1-10 订阅
排序:
A similar environment transfer strategy for dynamic multiobjective optimization
收藏 引用
INFORMATION SCIENCES 2025年 707卷
作者: Ji, Junzhong Zhang, Xiaoyu Yang, Cuicui Li, Xiang Sui, Guangyuan Beijing Univ Technol Coll Comp Sci Beijing Municipal Key Lab Multimedia & Intelligent Beijing 100124 Peoples R China Beijing Univ Technol Beijing Inst Artificial Intelligence Beijing 100124 Peoples R China
Solving dynamic multiobjective optimization problems (DMOPs) is extremely challenging due to the need to address multiple conflicting objectives that change over time. Transfer prediction- based strategies typically l... 详细信息
来源: 评论
OS-BiTP: Objective sorting-informed bidomain-information transfer prediction for dynamic multiobjective optimization
收藏 引用
SWARM AND EVOLUTIONARY COMPUTATION 2025年 95卷
作者: Zhao, Shijie Zhang, Tianran Zhang, Lei Song, Jinling Liaoning Tech Univ Inst Intelligence Sci & Optimizat Fuxin 123000 Peoples R China Liaoning Tech Univ Inst Optimizat & Decis Analyt Fuxin 123000 Peoples R China Liaoning Tech Univ 47 Zhonghua Rd Fuxin 123000 Peoples R China
Prediction response mechanisms based on transfer learning are extensively prevalent in dynamic multiobjective optimization algorithms (DMOAs), which transform historical information into a new environment for tracking... 详细信息
来源: 评论
dynamic multiobjective optimization for thrust allocation in ship application
收藏 引用
OCEAN ENGINEERING 2020年 218卷 108187-108187页
作者: Li Xuebin Wuhan 2nd Ship Design & Res Inst Wuhan 430205 Peoples R China
Thrust allocation is a key procedure in the dynamic position system (DPS) of marine vessels. The present work aims to study the characteristics of dynamic optimization in thrust allocation. A two-phase analysis proces... 详细信息
来源: 评论
dynamic multiobjective optimization driven by inverse reinforcement learning
收藏 引用
INFORMATION SCIENCES 2021年 575卷 468-484页
作者: Zou, Fei Yen, Gary G. Zhao, Chen Shenyang Univ Technol Sch Artificial Intelligence Shenyang 110870 Peoples R China Oklahoma State Univ Sch Elect & Comp Engn Stillwater OK 74078 USA Northeastern Univ Shenyang 110819 Peoples R China
Due to the widespread interest in dynamic multiobjective optimization in real-world applications, more and more approaches exploiting machine learning are deployed to tackle this type of problems. Unfortunately, recen... 详细信息
来源: 评论
A directed search strategy for evolutionary dynamic multiobjective optimization
收藏 引用
SOFT COMPUTING 2015年 第11期19卷 3221-3235页
作者: Wu, Yan Jin, Yaochu Liu, Xiaoxiong Xidian Univ Sch Math & Stat Xian 710071 Peoples R China Univ Surrey Dept Comp Guildford GU2 7XH Surrey England Donghua Univ Coll Informat Sci & Technol Shanghai 201620 Peoples R China Northwestern Polytech Univ Sch Automat Xian 710072 Peoples R China
Many real-world multiobjective optimization problems are dynamic, requiring an optimization algorithm that is able to continuously track the moving Pareto front over time. In this paper, we propose a directed search s... 详细信息
来源: 评论
Interaction-Based Prediction for dynamic multiobjective optimization
收藏 引用
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2023年 第6期27卷 1881-1895页
作者: Liu, Xiao-Fang Xu, Xin-Xin Zhan, Zhi-Hui Fang, Yongchun Zhang, Jun Nankai Univ Inst Robot & Automat Informat Syst Coll Artificial Intelligence Tianjin 300350 Peoples R China Nankai Univ Tianjin Key Lab Intelligent Robot Tianjin 300350 Peoples R China Ocean Univ China Sch Comp Sci & Technol Qingdao 266100 Peoples R China South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Peoples R China Zhejiang Normal Univ Jinhua 321004 Peoples R China Hanyang Univ Ansan 15588 South Korea
dynamic multiobjective optimization poses great challenges to evolutionary algorithms due to the change of optimal solutions or Pareto front with time. Learning-based methods are popular to extract the changing patter... 详细信息
来源: 评论
Novel prediction and memory strategies for dynamic multiobjective optimization
收藏 引用
SOFT COMPUTING 2015年 第9期19卷 2633-2653页
作者: Peng, Zhou Zheng, Jinhua Zou, Juan Liu, Min Xiangtan Univ Informat Engn Coll Minist Educ Key Lab Intelligent Comp & Informat Proc Xiangtan Hunan Peoples R China Hunan Univ Sci & Technol Xiangtan Hunan Peoples R China
dynamic multiobjective optimization problems (DMOPs) exist widely in real life, which requires the optimization algorithms to be able to track the Pareto optimal solution set after the change efficiently. In this pape... 详细信息
来源: 评论
Multidirectional Prediction Approach for dynamic multiobjective optimization Problems
收藏 引用
IEEE TRANSACTIONS ON CYBERNETICS 2019年 第9期49卷 3362-3374页
作者: Rong, Miao Gong, Dunwei Zhang, Yong Jin, Yaochu Pedrycz, Witold China Univ Min & Technol Sch Informat & Control Engn Xuzhou 221006 Jiangsu Peoples R China Qingdao Univ Sci & Technol Sch Informat Sci & Technol Qingdao 266061 Shandong Peoples R China Univ Surrey Dept Comp Sci Guildford GU2 7XH Surrey England Univ Alberta Dept Elect & Comp Engn Edmonton AB T6G IH7 Canada
Various real-world multiobjective optimization problems are dynamic, requiring evolutionary algorithms (EAs) to be able to rapidly track the moving Pareto front of an optimization problem once an environmental change ... 详细信息
来源: 评论
Reducing Negative Transfer Learning via Clustering for dynamic multiobjective optimization
收藏 引用
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2022年 第5期26卷 1102-1116页
作者: Li, Jianqiang Sun, Tao Lin, Qiuzhen Jiang, Min Tan, Kay Chen Shenzhen Univ Coll Comp Sci & Software Engn Shenzhen 518060 Peoples R China Xiamen Univ Sch Informat Xiamen 361005 Fujian Peoples R China Hong Kong Polytech Univ Dept Comp Hong Kong Peoples R China
dynamic multiobjective optimization problems (DMOPs) aim to optimize multiple (often conflicting) objectives that are changing over time. Recently, there are a number of promising algorithms proposed based on transfer... 详细信息
来源: 评论
A diversity introduction strategy based on change intensity for evolutionary dynamic multiobjective optimization
收藏 引用
SOFT COMPUTING 2020年 第17期24卷 12789-12799页
作者: Liu, Ruochen Peng, Luyao Liu, Jiangdi Liu, Jing Xidian Univ Lab Intelligent Percept & Image Understanding Minist Educ Xian 710071 Peoples R China
Many real-world problems can be modeled as dynamic multiobjective optimization ones with several competing objectives, which requires an optimization algorithm to track the movement of Pareto front over time. This pap... 详细信息
来源: 评论