咨询与建议

限定检索结果

文献类型

  • 74 篇 期刊文献
  • 13 篇 会议

馆藏范围

  • 87 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 85 篇 工学
    • 76 篇 计算机科学与技术...
    • 36 篇 电气工程
    • 17 篇 控制科学与工程
    • 2 篇 仪器科学与技术
    • 2 篇 信息与通信工程
    • 2 篇 船舶与海洋工程
    • 2 篇 软件工程
    • 1 篇 土木工程
    • 1 篇 环境科学与工程(可...
  • 13 篇 管理学
    • 13 篇 管理科学与工程(可...
  • 8 篇 理学
    • 4 篇 生物学
    • 2 篇 数学
    • 2 篇 海洋科学

主题

  • 87 篇 dynamic multiobj...
  • 20 篇 evolutionary alg...
  • 17 篇 prediction
  • 16 篇 optimization
  • 14 篇 sociology
  • 11 篇 statistics
  • 11 篇 heuristic algori...
  • 9 篇 evolutionary alg...
  • 7 篇 transfer learnin...
  • 7 篇 convergence
  • 7 篇 evolutionary com...
  • 6 篇 prediction algor...
  • 5 篇 predictive model...
  • 5 篇 change detection
  • 4 篇 optical fibers
  • 4 篇 knowledge transf...
  • 3 篇 maintenance engi...
  • 3 篇 inverse model
  • 3 篇 evolutionary alg...
  • 3 篇 manifolds

机构

  • 5 篇 china univ min &...
  • 5 篇 qingdao univ sci...
  • 4 篇 hong kong polyte...
  • 4 篇 natl univ singap...
  • 4 篇 northeastern uni...
  • 4 篇 city univ hong k...
  • 4 篇 xiamen univ sch ...
  • 4 篇 de montfort univ...
  • 4 篇 xiamen univ dept...
  • 3 篇 beijing univ tec...
  • 3 篇 michigan state u...
  • 3 篇 oklahoma state u...
  • 3 篇 zhengzhou univ s...
  • 3 篇 xiamen univ fuji...
  • 3 篇 univ surrey dept...
  • 3 篇 yanshan univ min...
  • 3 篇 ocean univ china...
  • 3 篇 tangshan univ de...
  • 3 篇 shenzhen univ co...
  • 2 篇 univ surrey dept...

作者

  • 11 篇 yang shengxiang
  • 10 篇 tan kay chen
  • 9 篇 jiang min
  • 7 篇 gong dunwei
  • 6 篇 jin yaochu
  • 6 篇 zheng jinhua
  • 5 篇 zou juan
  • 5 篇 sun hao
  • 4 篇 ding jinliang
  • 4 篇 cao anran
  • 4 篇 liang jing
  • 4 篇 hu ziyu
  • 3 篇 xu lihong
  • 3 篇 li xiaoli
  • 3 篇 pedrycz witold
  • 3 篇 guo yinan
  • 3 篇 liu ruochen
  • 3 篇 jiao licheng
  • 3 篇 qu boyang
  • 3 篇 chai tianyou

语言

  • 86 篇 英文
  • 1 篇 其他
检索条件"主题词=Dynamic multiobjective optimization"
87 条 记 录,以下是21-30 订阅
排序:
A dual prediction strategy with inverse model for evolutionary dynamic multiobjective optimization
收藏 引用
ISA TRANSACTIONS 2021年 117卷 196-209页
作者: Li, Xiaxia Yang, Jingming Sun, Hao Hu, Ziyu Cao, Anran Yanshan Univ Minist Educ Intelligent Control Syst & Intelligen Engn Res Ctr Qinhuangdao Hebei Peoples R China Yanshan Univ Inst Elect Engn Qinhuangdao Hebei Peoples R China
In practical applications and daily life, dynamic multiobjective optimization problems (DMOPs) are ubiquitous. The purpose of dealing with DMOPs is to track moving Pareto Front (PF) and find a series of Pareto Set (PS... 详细信息
来源: 评论
Co-evolutionary algorithm based on problem analysis for dynamic multiobjective optimization
收藏 引用
INFORMATION SCIENCES 2023年 第1期634卷 520-538页
作者: Li, Xiaoli Cao, Anran Wang, Kang Li, Xin Liu, Quanbo Beijing Univ Technol Fac Informat Technol Beijing 100124 Peoples R China Beijing Key Lab Computat Intelligence & Intelligen Beijing 100124 Peoples R China Minist Educ Engn Res Ctr Digital Community Beijing 100124 Peoples R China
dynamic multiobjective optimization problems (DMOPs) vary over time, requiring an optimization algorithm to track the position of Pareto-optimal front (PF) in a dynamic environment. To achieve that, a novel co-evoluti... 详细信息
来源: 评论
Interindividual Correlation and Dimension-Based Dual Learning for dynamic multiobjective optimization
收藏 引用
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2023年 第6期27卷 1780-1793页
作者: Yan, Li Qi, Wenlong Liang, Jing Qu, Boyang Yu, Kunjie Yue, Caitong Chai, Xuzhao Zhongyuan Univ Technol Sch Elect & Informat Engn Zhengzhou 450007 Peoples R China Zhengzhou Univ Sch Elect Engn Zhengzhou 450001 Peoples R China
dynamic multiobjective optimization problems (DMOPs) are characterized by their multiple objectives, constraints, and parameters that may change over time. The challenge in solving DMOPs is how to track the varying Pa... 详细信息
来源: 评论
A Knowledge Guided Transfer Strategy for Evolutionary dynamic multiobjective optimization
收藏 引用
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2023年 第6期27卷 1750-1764页
作者: Guo, Yinan Chen, Guoyu Jiang, Min Gong, Dunwei Liang, Jing China Univ Min & Technol Sch Informat & Control Engn Xuzhou 221116 Peoples R China China Univ Min & Technol Beijing Sch Mech Elect & Informat Engn Beijing 100083 Peoples R China Xiamen Univ Dept Cognit Sci & Technol Xiamen 361005 Peoples R China Zhengzhou Univ Sch Elect Engn Zhengzhou 450001 Peoples R China
The key task in dynamic multiobjective optimization problems (DMOPs) is to find Pareto-optima closer to the true one as soon as possible once a new environment occurs. Previous dynamic multiobjective evolutionary algo... 详细信息
来源: 评论
Individual-Based Transfer Learning for dynamic multiobjective optimization
收藏 引用
IEEE TRANSACTIONS ON CYBERNETICS 2021年 第10期51卷 4968-4981页
作者: Jiang, Min Wang, Zhenzhong Guo, Shihui Gao, Xing Tan, Kay Chen Xiamen Univ Sch Informat Xiamen 361005 Peoples R China City Univ Hong Kong Dept Comp Sci Hong Kong Peoples R China City Univ Hong Kong Shenzhen Res Inst Shenzhen 518057 Peoples R China
dynamic multiobjective optimization problems (DMOPs) are characterized by optimization functions that change over time in varying environments. The DMOP is challenging because it requires the varying Pareto-optimal se... 详细信息
来源: 评论
Inverse Gaussian Process Modeling for Evolutionary dynamic multiobjective optimization
收藏 引用
IEEE TRANSACTIONS ON CYBERNETICS 2022年 第10期52卷 11240-11253页
作者: Zhang, Huan Ding, Jinliang Jiang, Min Tan, Kay Chen Chai, Tianyou Northeastern Univ State Key Lab Synthet Automat Proc Ind Shenyang 110819 Peoples R China Xiamen Univ Dept Artificial Intelligence Xiamen 361005 Fujian Peoples R China Hong Kong Polytech Univ Dept Comp Hong Kong Peoples R China
For dynamic multiobjective optimization problems (DMOPs), it is challenging to track the varying Pareto-optimal front. Most traditional approaches estimate the Pareto-optimal sets in the decision space. However, the o... 详细信息
来源: 评论
Solving dynamic multiobjective optimization Problems via Feedback-Guided Transfer and Trend Manifold Prediction
收藏 引用
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS 2024年 第12期54卷 7218-7229页
作者: Wang, Yong Li, Kuichao Wang, Gai-Ge Gong, Dunwei Li, Keqin Ocean Univ China Sch Comp Sci & Technol Qingdao 266101 Peoples R China Qingdao Univ Sci & Technol Sch Informat Sci & Technol Qingdao 266101 Peoples R China SUNY Coll New Paltz Dept Comp Sci New Paltz NY 12561 USA
Solving dynamic multiobjective optimization problems (DMOPs) is very challenging due to the requirements to respond rapidly and precisely to changes in an environment. Many prediction-and memory-based algorithms have ... 详细信息
来源: 评论
Immune clonal coevolutionary algorithm for dynamic multiobjective optimization
收藏 引用
NATURAL COMPUTING 2014年 第3期13卷 421-445页
作者: Shang, Ronghua Jiao, Licheng Ren, Yujing Wang, Jia Li, Yangyang Xidian Univ Key Lab Intelligent Percept & Image Understanding Minist Educ China Xian 710071 Peoples R China
In this paper, a new evolutionary algorithm, called immune clonal coevolutionary algorithm (ICCoA) for dynamic multiobjective optimization (DMO) is proposed. On the basis of the basic principles of artificial immune s... 详细信息
来源: 评论
A Mahalanobis Distance-Based Approach for dynamic multiobjective optimization With Stochastic Changes
收藏 引用
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2024年 第1期28卷 238-251页
作者: Hu, Yaru Zheng, Jinhua Jiang, Shouyong Yang, Shengxiang Zou, Juan Wang, Rui Xiangtan Univ Key Lab Hunan Prov Internet Things & Informat Secu Xiangtan 411105 Peoples R China Xiangtan Univ Key Lab Intelligent Comp & Informat Proc Minist Educ Xiangtan 411105 Peoples R China Univ Aberdeen Dept Comp Sci Aberdeen AB24 3FX Scotland De Montfort Univ Inst Artificial Intelligence Sch Comp Sci & Informat Leicester LE1 9BH England Natl Univ Def Technol Coll Syst Engn Changsha 410073 Peoples R China
In recent years, researchers have made significant progress in handling dynamic multiobjective optimization problems (DMOPs), particularly for environmental changes with predictable characteristics. However, little at... 详细信息
来源: 评论
Hybrid of memory and prediction strategies for dynamic multiobjective optimization
收藏 引用
INFORMATION SCIENCES 2019年 485卷 200-218页
作者: Liang, Zhengping Zheng, Shunxiang Zhu, Zexuan Yang, Shengxiang Shenzhen Univ Coll Comp Sci & Software Engn Shenzhen 518060 Peoples R China Shenzhen Cyberspace Lab Shenzhen 518052 Peoples R China De Montfort Univ CCI Sch Comp Sci & Informat Leicester LE1 9BH Leics England
dynamic multiobjective optimization problems (DMOPs) are characterized by a time-variant Pareto optimal front (PF) and/or Pareto optimal set (PS). To handle DMOPs, an algorithm should be able to track the movement of ... 详细信息
来源: 评论