咨询与建议

限定检索结果

文献类型

  • 3,779 篇 期刊文献
  • 698 篇 会议
  • 70 篇 学位论文
  • 11 篇 资讯
  • 2 册 图书

馆藏范围

  • 4,560 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,044 篇 理学
    • 2,308 篇 统计学(可授理学、...
    • 962 篇 数学
    • 606 篇 生物学
    • 160 篇 物理学
    • 41 篇 系统科学
    • 39 篇 地球物理学
  • 2,045 篇 工学
    • 1,250 篇 计算机科学与技术...
    • 655 篇 电气工程
    • 197 篇 信息与通信工程
    • 173 篇 控制科学与工程
    • 151 篇 软件工程
    • 72 篇 机械工程
    • 72 篇 电子科学与技术(可...
    • 69 篇 仪器科学与技术
    • 49 篇 环境科学与工程(可...
    • 48 篇 生物医学工程(可授...
    • 36 篇 测绘科学与技术
    • 36 篇 交通运输工程
  • 1,212 篇 经济学
    • 1,133 篇 应用经济学
    • 127 篇 理论经济学
  • 402 篇 医学
    • 203 篇 基础医学(可授医学...
    • 157 篇 公共卫生与预防医...
    • 156 篇 临床医学
    • 44 篇 特种医学
  • 389 篇 农学
    • 36 篇 作物学
  • 349 篇 管理学
    • 237 篇 管理科学与工程(可...
    • 52 篇 工商管理
    • 50 篇 公共管理
  • 144 篇 教育学
    • 134 篇 心理学(可授教育学...
    • 35 篇 教育学
  • 31 篇 法学
  • 12 篇 文学
  • 4 篇 军事学
  • 4 篇 艺术学
  • 2 篇 哲学

主题

  • 4,560 篇 em algorithm
  • 186 篇 maximum likeliho...
  • 181 篇 maximum likeliho...
  • 163 篇 mixture models
  • 161 篇 missing data
  • 151 篇 mixture model
  • 112 篇 clustering
  • 73 篇 hidden markov mo...
  • 71 篇 gaussian mixture...
  • 69 篇 incomplete data
  • 63 篇 parameter estima...
  • 60 篇 model selection
  • 57 篇 bootstrap
  • 54 篇 hidden markov mo...
  • 54 篇 kalman filter
  • 54 篇 longitudinal dat...
  • 53 篇 model-based clus...
  • 46 篇 expectation-maxi...
  • 46 篇 classification
  • 45 篇 random effects

机构

  • 24 篇 univ n carolina ...
  • 23 篇 univ missouri de...
  • 23 篇 penn state univ ...
  • 22 篇 univ washington ...
  • 22 篇 mcmaster univ de...
  • 21 篇 univ hong kong d...
  • 21 篇 univ michigan de...
  • 21 篇 mcmaster univ de...
  • 20 篇 indian inst tech...
  • 19 篇 shanghai univ fi...
  • 19 篇 univ connecticut...
  • 18 篇 harvard univ dep...
  • 16 篇 harvard univ sch...
  • 16 篇 univ washington ...
  • 16 篇 univ calif river...
  • 15 篇 univ waterloo de...
  • 15 篇 univ florida dep...
  • 14 篇 peking univ lmam...
  • 14 篇 guangzhou univ s...
  • 14 篇 univ british col...

作者

  • 39 篇 kundu debasis
  • 27 篇 yao weixin
  • 26 篇 lachos victor h.
  • 26 篇 balakrishnan n.
  • 22 篇 sun jianguo
  • 19 篇 tian guo-liang
  • 18 篇 ma jinwen
  • 17 篇 pal suvra
  • 17 篇 okamura hiroyuki
  • 17 篇 huang biao
  • 17 篇 dohi tadashi
  • 16 篇 bartolucci franc...
  • 16 篇 peng yingwei
  • 16 篇 wu rongling
  • 15 篇 shen pao-sheng
  • 15 篇 punzo antonio
  • 14 篇 zhang jiajia
  • 14 篇 zeng donglin
  • 14 篇 mclachlan gj
  • 14 篇 mclachlan geoffr...

语言

  • 4,170 篇 英文
  • 365 篇 其他
  • 20 篇 中文
  • 3 篇 德文
  • 1 篇 西班牙文
  • 1 篇 法文
  • 1 篇 日文
检索条件"主题词=EM algorithm"
4560 条 记 录,以下是81-90 订阅
排序:
Model selection in biological networks using a graphical em algorithm
收藏 引用
NEUROCOMPUTING 2019年 349卷 271-280页
作者: Ben Hassen, Hanen Masmoudi, Khalil Masmoudi, Afif Sfax Univ Fac Sci Sfax Lab Probabil & Stat PB 1171 Sfax Tunisia
The analysis of biological networks is an important task in life sciences. Most of biological interactions can be modeled using graphical networks where arcs represent probabilistic relationships between nodes or vari... 详细信息
来源: 评论
Joint Signal Detection and Channel Estimation Using Differential Models via em algorithm for OFDM Mobile Communications
收藏 引用
IEICE TRANSACTIONS ON COMMUNICATIONS 2011年 第2期E94B卷 533-545页
作者: Muraoka, Kazushi Fukawa, Kazuhiko Suzuki, Hiroshi Suyama, Satoshi Tokyo Inst Technol Tokyo 1528550 Japan
This paper proposes a new approach for the joint processing of signal detection and channel estimation based on the expectation-maximization (em) algorithm in orthogonal frequency division multiplexing (OFDM) mobile c... 详细信息
来源: 评论
Reconstructing 3D light microscopic images using the em algorithm
收藏 引用
PATTERN RECOGNITION LETTERS 1996年 第14期17卷 1491-1498页
作者: Vitria, J Llacer, J UNIV AUTONOMA BARCELONA COMP VIS CTRBELLATERRA 08193BARCELONASPAIN UNIV CALIF BERKELEY LAWRENCE BERKELEY LABBERKELEYCA
An iterative method to recover perfectly focused images from a set of light microscopic images is proposed. The method is based on the em algorithm, and it assumes a prior knowledge about the Point Spread Function of ... 详细信息
来源: 评论
Reinforcement learning, Sequential Monte Carlo and the em algorithm
收藏 引用
SADHANA-ACADemY PROCEEDINGS IN ENGINEERING SCIENCES 2018年 第8期43卷 1-11页
作者: Borkar, Vivek S. Jain, Ankush V. Indian Inst Technol Dept Elect Engn Bombay 400076 Maharashtra India Graviton Res Capital LLP 14th FloorTower CBldg 8 Gurugram 122002 Haryana India
Using the expression for the unnormalized nonlinear filter for a hidden Markov model, we develop a dynamic-programming-like backward recursion for the filter. This is combined with some ideas from reinforcement learni... 详细信息
来源: 评论
Parameter estimation of incomplete data in competing risks using the em algorithm
收藏 引用
IEEE TRANSACTIONS ON RELIABILITY 2005年 第2期54卷 282-290页
作者: Park, C Clemson Univ Dept Math Sci Clemson SC 29634 USA
Consider a system which is made up of multiple components connected in a series. In this case, the failure of the whole system is caused by the earliest failure of any of the components, which is commonly referred to ... 详细信息
来源: 评论
Reliability evaluation of the servo turret with accurate failure data and interval censored data based on em algorithm
收藏 引用
JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY 2020年 第4期34卷 1503-1513页
作者: Sun, Bo Balakrishnan, Narayanaswamy Chen, Fei Xu, Binbin Yang, Zhaojun Liu, Yiming Jilin Univ Sch Mech & Aerosp Engn Changchun 130022 Jilin Peoples R China McMaster Univ Dept Math & Stat Hamilton ON L8S 4K1 Canada Shenzhen Technol Univ Sino German Coll Intelligent Mfg Shenzhen 518118 Guangdong Peoples R China Northwestern Polytech Univ Dept Appl Math Xian 710072 Shanxi Peoples R China
The servo turret is a complex electromechanical hydraulic component that is the most likely to fail in a numerical control lathe. Reliability evaluation is used to make statistical inferences about the reliability cha... 详细信息
来源: 评论
Bayesian Classification and Non-Bayesian Label Estimation via em algorithm to Identify Differentially Expressed Genes: a Comparative Study
收藏 引用
BIOMETRICAL JOURNAL 2008年 第5期50卷 824-836页
作者: Antunes, Marilia Sousa, Lisete Univ Lisbon Fac Sci P-1749016 Lisbon Portugal DEIO Ctr Stat & Applicat P-1749016 Lisbon Portugal
Gene classification problem is studied considering the ratio of gene expression levels, X, in two-channel microarrays and a non-observed categorical variable indicating how differentially expressed the gene is: non di... 详细信息
来源: 评论
A Robust and Flexible em algorithm for Mixtures of Elliptical Distributions with Missing Data
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2023年 71卷 1669-1682页
作者: Mouret, Florian Hippert-Ferrer, Alexandre Pascal, Frederic Tourneret, Jean-Yves TerraNIS SAS F-31520 Ramonville St Agne France Univ Toulouse IRIT INP ENSEEIHT TeSA F-31000 Toulouse France Univ Paris Saclay CNRS CentraleSupelec Lab Signaux & Syst F-91190 Gif Sur Yvette France Univ Gustave Eiffel IGN ENSG LASTIG F-94165 St Mande France
This article tackles the problem of missing data imputation for noisy and non-Gaussian data. A classical imputation method, the Expectation Maximization (em) algorithm for Gaussian mixture models, has shown interestin... 详细信息
来源: 评论
Presence-Only Data and the em algorithm
收藏 引用
BIOMETRICS 2009年 第2期65卷 554-563页
作者: Ward, Gill Hastie, Trevor Barry, Simon Elith, Jane Leathwick, John R. Stanford Univ Dept Stat Stanford CA 94305 USA Australian Govt Dept Agr Fisheries & Forestry Canberra ACT 2601 Australia Univ Melbourne Sch Bot Parkville Vic 3010 Australia Natl Inst Water & Atmospher Res Hamilton New Zealand
In ecological modeling of the habitat of a species, it can be prohibitively expensive to determine species absence. Presence-only data consist of a sample of locations with observed presences and a separate group of l... 详细信息
来源: 评论
Sequence estimation in the presence of random parameters via the em algorithm
收藏 引用
IEEE TRANSACTIONS ON COMMUNICATIONS 1997年 第3期45卷 300-308页
作者: Georghiades, CN Han, JC Electrical Engineering Department Texas A and M University College Station TX USA Department of Information and Communications Myoneji University Yongin si Kyunggi South Korea
The expectation-maximization (em) algorithm was first introduced in the statistics literature as an iterative procedure that under some conditions produces maximum-likelihood (ML) parameter estimates, In this paper we... 详细信息
来源: 评论