咨询与建议

限定检索结果

文献类型

  • 3 篇 会议

馆藏范围

  • 3 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3 篇 工学
    • 3 篇 计算机科学与技术...
    • 1 篇 控制科学与工程
    • 1 篇 软件工程

主题

  • 3 篇 emo algorithms
  • 2 篇 evolutionary com...
  • 1 篇 multi-objective ...
  • 1 篇 large-scale comb...
  • 1 篇 multi-objective ...
  • 1 篇 moo test problem...
  • 1 篇 combinatorial op...
  • 1 篇 local search for...
  • 1 篇 multiobjective o...

机构

  • 2 篇 city univ hong k...
  • 2 篇 city univ hong k...
  • 2 篇 southern univ sc...
  • 1 篇 osaka prefecture...

作者

  • 2 篇 pang lie meng
  • 2 篇 gong cheng
  • 2 篇 zhang qingfu
  • 2 篇 nan yang
  • 2 篇 ishibuchi hisao
  • 1 篇 kaige s
  • 1 篇 ishibuchi h
  • 1 篇 murata t

语言

  • 3 篇 英文
检索条件"主题词=EMO algorithms"
3 条 记 录,以下是1-10 订阅
排序:
Heuristic Initialization and Knowledge-based Mutation for Large-Scale Multi-Objective 0-1 Knapsack Problems
Heuristic Initialization and Knowledge-based Mutation for La...
收藏 引用
Genetic and Evolutionary Computation Conference (GECCO)
作者: Gong, Cheng Nan, Yang Pang, Lie Meng Zhang, Qingfu Ishibuchi, Hisao City Univ Hong Kong Dept Comp Sci Hong Kong Peoples R China Southern Univ Sci & Technol Shenzhen 518055 Peoples R China City Univ Hong Kong Shenzhen Res Inst Shenzhen Peoples R China
Recently, there has been a growing interest in large-scale multi-objective optimization problems within the evolutionary multiobjective optimization (emo) community. These problems involve hundreds or thousands of dec... 详细信息
来源: 评论
Performance of NSGA-III on Multi-objective Combinatorial Optimization Problems Heavily Depends on Its Implementations
Performance of NSGA-III on Multi-objective Combinatorial Opt...
收藏 引用
Genetic and Evolutionary Computation Conference (GECCO)
作者: Gong, Cheng Nan, Yang Pang, Lie Meng Zhang, Qingfu Ishibuchi, Hisao City Univ Hong Kong Dept Comp Sci Hong Kong Peoples R China Southern Univ Sci & Technol Shenzhen 518055 Peoples R China City Univ Hong Kong Shenzhen Res Inst Shenzhen Peoples R China
Newly proposed many-objective algorithms have been almost always compared with NSGA-III for performance evaluation. Since the authors of the NSGA-III paper have not provided any source code, researchers usually use an... 详细信息
来源: 评论
Performance evaluation of memetic emo algorithms using dominance relation-based replacement rules on MOO test problems
Performance evaluation of memetic EMO algorithms using domin...
收藏 引用
IEEE International Conference on Systems, Man and Cybernetics (SMC 03)
作者: Kaige, S Murata, T Ishibuchi, H Osaka Prefecture Univ Dept Ind Engn Sakai Osaka 591 Japan
In this paper, we apply emo (Evolutionary Multiobjective Optimization) algorithms with a Generalized Dominance Relation-based Local Search (GDR-LS) procedure to MOO (Multi-Objective Optimization) test problems. In the... 详细信息
来源: 评论