An ongoing challenge for many military imaging systems is the detection and classification of weak target signatures in a cluttered environment. In such cases, the use of image contrast and relative target motion alon...
详细信息
ISBN:
(数字)9781510613317
ISBN:
(纸本)9781510613317;9781510613300
An ongoing challenge for many military imaging systems is the detection and classification of weak target signatures in a cluttered environment. In such cases, the use of image contrast and relative target motion alone does not always provide a sufficient level of target discrimination to give operational confidence and it is therefore necessary to consider the use of other discriminatory scene information. Polarisation is one such source of information and this paper reports on an extensive series of polarimetric trials undertaken across the visible, NIR, SWIR, MWIR and LWIR spectral bands. Using this data, the benefits and limitations of polarisation discrimination are reviewed in the context of practical military scenarios. It is shown that polarisation signatures vary with viewing geometry and atmospheric conditions. This would lead to an unpredictable performance level if the sensor discrimination was based solely on polarisation. However, by carefully combining polarisation with other scene information, useful operational benefits can be obtained and this is illustrated through a consideration of different data fusion approaches.
Polarisation information within a scene can be exploited in military systems to give enhanced automatic target detection and recognition (ATD/R) performance. However, the performance gain achieved is highly dependent ...
详细信息
ISBN:
(纸本)9781510609051;9781510609068
Polarisation information within a scene can be exploited in military systems to give enhanced automatic target detection and recognition (ATD/R) performance. However, the performance gain achieved is highly dependent on factors such as the geometry, viewing conditions, and the surface finish of the target. Such performance sensitivities are highly undesirable in many tactical military systems where operational conditions can vary significantly and rapidly during a mission. Within this paper, a range of processing architectures and fusion methods is considered in terms of their practical viability and operational robustness for systems requiring ATD/R. It is shown that polarisation information can give useful performance gains but, to retained system robustness, the introduction of polarimetric processing should be done in such a way as to not compromise other discriminatory scene information in the spectral and spatial domains. The analysis concludes that polarimetric data can be effectively integrated with conventional intensity-based ATD/R by either adapting the ATD/R processing function based on the scene polarisation or else by detection-level fusion. Both of these approaches avoid the introduction of processing bottlenecks and limit the impact of processing on system latency.
暂无评论