咨询与建议

限定检索结果

文献类型

  • 552 篇 期刊文献
  • 336 篇 会议
  • 15 篇 学位论文
  • 1 册 图书

馆藏范围

  • 904 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 849 篇 工学
    • 571 篇 计算机科学与技术...
    • 326 篇 电气工程
    • 130 篇 软件工程
    • 89 篇 信息与通信工程
    • 77 篇 控制科学与工程
    • 58 篇 仪器科学与技术
    • 48 篇 测绘科学与技术
    • 40 篇 生物医学工程(可授...
    • 33 篇 土木工程
    • 28 篇 环境科学与工程(可...
    • 27 篇 机械工程
    • 24 篇 电子科学与技术(可...
    • 19 篇 石油与天然气工程
    • 14 篇 动力工程及工程热...
    • 11 篇 水利工程
    • 10 篇 光学工程
    • 10 篇 材料科学与工程(可...
    • 10 篇 交通运输工程
    • 9 篇 力学(可授工学、理...
    • 8 篇 建筑学
  • 189 篇 理学
    • 83 篇 物理学
    • 47 篇 地球物理学
    • 35 篇 生物学
    • 26 篇 化学
    • 13 篇 数学
  • 171 篇 医学
    • 130 篇 临床医学
    • 26 篇 基础医学(可授医学...
    • 21 篇 特种医学
  • 61 篇 管理学
    • 56 篇 管理科学与工程(可...
  • 10 篇 文学
    • 8 篇 外国语言文学
  • 7 篇 农学
  • 5 篇 艺术学
  • 2 篇 法学
  • 1 篇 经济学
  • 1 篇 教育学

主题

  • 904 篇 encoder-decoder
  • 159 篇 deep learning
  • 81 篇 attention mechan...
  • 60 篇 attention
  • 54 篇 semantic segment...
  • 48 篇 feature extracti...
  • 46 篇 lstm
  • 38 篇 transformer
  • 36 篇 decoding
  • 35 篇 convolutional ne...
  • 32 篇 cnn
  • 24 篇 semantics
  • 22 篇 image captioning
  • 22 篇 u-net
  • 22 篇 convolutional ne...
  • 21 篇 speech recogniti...
  • 20 篇 task analysis
  • 20 篇 machine learning
  • 19 篇 long short-term ...
  • 18 篇 image segmentati...

机构

  • 8 篇 univ chinese aca...
  • 8 篇 univ sci & techn...
  • 6 篇 chinese acad sci...
  • 6 篇 univ sci & techn...
  • 6 篇 univ sci & techn...
  • 5 篇 nanjing univ sci...
  • 4 篇 jiangnan univ sc...
  • 4 篇 microsoft corp r...
  • 4 篇 chongqing univ c...
  • 4 篇 wuhan univ sch r...
  • 4 篇 shenyang siasun ...
  • 4 篇 southeast univ s...
  • 4 篇 univ sci & techn...
  • 4 篇 toyota technol i...
  • 4 篇 iflytek res peop...
  • 4 篇 google inc mount...
  • 4 篇 shanghai jiao to...
  • 4 篇 northeastern uni...
  • 4 篇 tianjin univ sch...
  • 4 篇 chinese acad sci...

作者

  • 8 篇 watanabe shinji
  • 7 篇 du jun
  • 6 篇 liu yang
  • 6 篇 chen kai
  • 6 篇 zhang jianshu
  • 5 篇 ling zhen-hua
  • 5 篇 zhang limao
  • 5 篇 wang feng
  • 5 篇 wang jun
  • 4 篇 gaur yashesh
  • 4 篇 zhang chunyu
  • 4 篇 wu chengdong
  • 4 篇 wang qing
  • 4 篇 wang bing
  • 4 篇 li chen
  • 4 篇 song xiao
  • 4 篇 xu bo
  • 4 篇 xu fang
  • 4 篇 jiao licheng
  • 4 篇 toshniwal shubha...

语言

  • 838 篇 英文
  • 32 篇 其他
  • 31 篇 中文
  • 2 篇 法文
检索条件"主题词=Encoder-Decoder"
904 条 记 录,以下是841-850 订阅
Natural Language Description of Video Streams Using Task-Specific Feature Encoding
收藏 引用
IEEE ACCESS 2018年 6卷 16639-16645页
作者: Dilawari, Aniqa Khan, Muhammad Usman Ghani Farooq, Ammarah Zahoor-Ur-Rehman Rho, Seungmin Mehmood, Irfan Univ Engn & Technol Lahore Dept Comp Sci & Engn Lahore 54890 Pakistan Univ Engn & Technol Lahore Al Khawarizmi Inst Comp Sci Lahore 54890 Pakistan COMSATS Inst Informat Technol Attock Attock 43600 Pakistan Sungkyul Univ Dept Media Software Anyang 430742 South Korea Sejong Univ Dept Software Seoul 143747 South Korea
In recent years, deep learning approaches have gained great attention due to their superior performance and the availability of high speed computing resources. These approaches are also extended towards the real time ... 详细信息
来源: 评论
Attentive encoder-based Extractive Text Summarization  18
Attentive Encoder-based Extractive Text Summarization
收藏 引用
27th ACM International Conference on Information and Knowledge Management (CIKM)
作者: Feng, Chong Cai, Fei Chen, Honghui de Rijke, Maarten Natl Univ Def Technol Sci & Technol Informat Syst Engn Lab Changsha Hunan Peoples R China Univ Amsterdam Inst Informat Amsterdam Netherlands
In previous work on text summarization, encoder-decoder architectures and attention mechanisms have both been widely used. Attention-based encoder-decoder approaches typically focus on taking the sentences preceding a... 详细信息
来源: 评论
Emotional Human-Machine Conversation Generation Based on Long Short-Term Memory
收藏 引用
COGNITIVE COMPUTATION 2018年 第3期10卷 389-397页
作者: Sun, Xiao Peng, Xiaoqi Ding, Shuai Hefei Univ Technol Sch Management TunXi Rd 193 Hefei Anhui Peoples R China Hefei Univ Technol Sch Comp & Informat TunXi Rd 193 Hefei Anhui Peoples R China
With the rise in popularity of artificial intelligence, the technology of verbal communication between man and machine has received an increasing amount of attention, but generating a good conversation remains a diffi... 详细信息
来源: 评论
Repeated review based image captioning for image evidence review
收藏 引用
SIGNAL PROCESSING-IMAGE COMMUNICATION 2018年 63卷 141-148页
作者: Guan, Jinning Wang, Eric Harbin Inst Technol Shenzhen Grad Sch Shenzhen Key Lab Internet Informat Collaborat Shenzhen 518055 Peoples R China
We propose a repeated review deep learning model for image captioning in image evidence review process. It consists of two subnetworks. One is the convolutional neural network which is employed to extract the image fe... 详细信息
来源: 评论
High-Resolution Remote Sensing Imagery Classification of Imbalanced Data Using Multistage Sampling Method and Deep Neural Networks
收藏 引用
REMOTE SENSING 2019年 第21期11卷 2523-2523页
作者: Xia, Wei Ma, Caihong Liu, Jianbo Liu, Shibin Chen, Fu Yang, Zhi Duan, Jianbo Chinese Acad Sci Aerosp Informat Res Inst Beijing 100094 Peoples R China Univ Chinese Acad Sci Sch Elect Elect & Commun Engn Beijing 101408 Peoples R China Sanya Inst Remote Sensing Sanya 572029 Peoples R China China Elect Power Res Inst Co Ltd Beijing 100055 Peoples R China
Class imbalance is a key issue for the application of deep learning for remote sensing image classification because a model generated by imbalanced samples training has low classification accuracy for minority classes... 详细信息
来源: 评论
Dense Semantic Labeling with Atrous Spatial Pyramid Pooling and decoder for High-Resolution Remote Sensing Imagery
收藏 引用
REMOTE SENSING 2019年 第1期11卷 20-20页
作者: Wang, Yuhao Liang, Binxiu Ding, Meng Li, Jiangyun Univ Sci & Technol Beijing Sch Automat & Elect Engn Beijing 100083 Peoples R China Minist Educ Key Lab Knowledge Automat Ind Proc Beijing 100083 Peoples R China Thermo Fisher Sci Richardson TX 75081 USA
Dense semantic labeling is significant in high-resolution remote sensing imagery research and it has been widely used in land-use analysis and environment protection. With the recent success of fully convolutional net... 详细信息
来源: 评论
Single Image Dehazing using CNN
收藏 引用
Procedia Computer Science 2019年 147卷 124-130页
作者: Huzaifa Rashid Nauman Zafar M Javed Iqbal Hassan Dawood Hussain Dawood Department of Software Engineering University of Engineering and Technology Taxila Pakistan Faculty of Computing and Information Technology University of Jeddah Jeddah Saudi Arabia
Haze is a natural phenomenon in which the dust, smoke and other particles alter the vision of the sky to reduce the visibility. Hazy images cause various visibility problems for traffic user, tourists everywhere, espe... 详细信息
来源: 评论
Contextual label sensitive gated network for biomedical event trigger extraction
收藏 引用
JOURNAL OF BIOMEDICAL INFORMATICS 2019年 第0期95卷 103221-000页
作者: Li, Lishuang Huang, Mengzuo Liu, Yang Qian, Shuang He, Xinyu Dalian Univ Technol Sch Comp Sci & Technol Dalian Peoples R China
Biomedical events play a key role in improving biomedical research. Event trigger identification, extracting the words describing the event types, is a crucial and prerequisite step in the pipeline process of biomedic... 详细信息
来源: 评论
ED-GAN:基于改进生成对抗网络的法律文本生成模型
收藏 引用
小型微型计算机系统 2019年 第5期40卷 1020-1025页
作者: 康云云 彭敦陆 陈章 刘丛 上海理工大学光电信息与计算机工程学院 上海200093
法律文本的自动生成能缓解我国法律服务行业中的人力资源不足的问题,对抗生成网络模型的出现为法律文本的自动生成提供了新思路.本文提出一种基于对抗生成网络的文本自动生成模型——ED-GAN(Generative Adversarial Networks based on E... 详细信息
来源: 评论
RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures
收藏 引用
GIGASCIENCE 2019年 第11期8卷 giz123页
作者: Yasrab, Robail Atkinson, Jonathan A. Wells, Darren M. French, Andrew P. Pridmore, Tony P. Pound, Michael P. Univ Nottingham Sch Comp Sci Jubilee CampusWollaton Rd Nottingham NG8 1BB England Univ Nottingham Sch Biosci Sutton Bonington Campus Nottingham LE12 SRD England
Background: In recent years quantitative analysis of root growth has become increasingly important as a way to explore the influence of abiotic stress such as high temperature and drought on a plant's ability to t... 详细信息
来源: 评论