咨询与建议

限定检索结果

文献类型

  • 108 篇 期刊文献
  • 32 篇 会议

馆藏范围

  • 140 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 133 篇 工学
    • 84 篇 计算机科学与技术...
    • 53 篇 电气工程
    • 19 篇 信息与通信工程
    • 12 篇 控制科学与工程
    • 12 篇 软件工程
    • 10 篇 仪器科学与技术
    • 10 篇 测绘科学与技术
    • 10 篇 环境科学与工程(可...
    • 6 篇 水利工程
    • 6 篇 生物医学工程(可授...
    • 5 篇 机械工程
    • 5 篇 电子科学与技术(可...
    • 5 篇 土木工程
    • 3 篇 光学工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 动力工程及工程热...
    • 3 篇 建筑学
    • 3 篇 石油与天然气工程
    • 2 篇 化学工程与技术
    • 2 篇 交通运输工程
  • 32 篇 医学
    • 25 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 27 篇 理学
    • 13 篇 物理学
    • 7 篇 地球物理学
    • 5 篇 生物学
    • 3 篇 化学
    • 2 篇 数学
    • 2 篇 大气科学
  • 8 篇 管理学
    • 7 篇 管理科学与工程(可...
  • 4 篇 农学
  • 2 篇 文学
  • 2 篇 艺术学
  • 1 篇 法学

主题

  • 140 篇 encoder-decoder ...
  • 33 篇 deep learning
  • 16 篇 semantic segment...
  • 14 篇 attention mechan...
  • 11 篇 feature extracti...
  • 9 篇 convolutional ne...
  • 7 篇 image segmentati...
  • 6 篇 real-time semant...
  • 6 篇 convolutional ne...
  • 5 篇 transfer learnin...
  • 5 篇 feature fusion
  • 5 篇 decoding
  • 5 篇 training
  • 5 篇 recurrent neural...
  • 4 篇 lstm
  • 4 篇 image captioning
  • 4 篇 convolution
  • 4 篇 remote sensing
  • 4 篇 medical image se...
  • 3 篇 autonomous drivi...

机构

  • 2 篇 monash univ dept...
  • 2 篇 soochow univ sch...
  • 2 篇 iit hyderabad hy...
  • 2 篇 zhejiang univ sc...
  • 2 篇 zhejiang univ in...
  • 2 篇 king mongkuts un...
  • 1 篇 multimedia univ ...
  • 1 篇 nanjing univ pos...
  • 1 篇 xiangtan univ sc...
  • 1 篇 zhejiang univ te...
  • 1 篇 yanshan univ qin...
  • 1 篇 univ waterloo wa...
  • 1 篇 the communicatio...
  • 1 篇 national key lab...
  • 1 篇 ningbo univ coll...
  • 1 篇 east china univ ...
  • 1 篇 polytech univ tu...
  • 1 篇 kyungpook natl u...
  • 1 篇 govt coll techno...
  • 1 篇 natl res council...

作者

  • 3 篇 singh maheep
  • 3 篇 sharma gaurav
  • 2 篇 zhou peng
  • 2 篇 chiracharit wera...
  • 2 篇 zhou yanlai
  • 2 篇 zhang lei
  • 2 篇 makwana dhruv
  • 2 篇 corcoran peter
  • 2 篇 xu xinmeng
  • 2 篇 deng jianghua
  • 2 篇 basak shubhajit
  • 2 篇 chakraborty dipa...
  • 2 篇 mohan c. krishna
  • 2 篇 lu ye
  • 2 篇 nag subhrajit
  • 2 篇 xu chong-yu
  • 2 篇 mittal sparsh
  • 2 篇 zhou wujie
  • 2 篇 khan faisal
  • 2 篇 chamnongthai kos...

语言

  • 137 篇 英文
  • 3 篇 其他
检索条件"主题词=Encoder-Decoder Architecture"
140 条 记 录,以下是81-90 订阅
排序:
Attention based lightweight asymmetric network for real-time semantic segmentation
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2024年 130卷
作者: Liu, Qian Wang, Cunbao Li, Zhensheng Qi, Youwei Fang, Jiongtao Nanjing Univ Informat Sci & Technol Sch Artificial Intelligence Sch Future Technol Nanjing 210044 Peoples R China Nanjing Univ Informat Sci & Technol Sch Comp Sci Nanjing 210044 Peoples R China
Real-time semantic segmentation is one of the important tasks in the field of computer vision, which is widely used in the fields of autonomous driving and medical imaging. Existing lightweight networks usually improv... 详细信息
来源: 评论
Lightweight Self-Attention Network for Semantic Segmentation
Lightweight Self-Attention Network for Semantic Segmentation
收藏 引用
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) / IEEE World Congress on Computational Intelligence (IEEE WCCI) / International Joint Conference on Neural Networks (IJCNN) / IEEE Congress on Evolutionary Computation (IEEE CEC)
作者: Zhou, Yan Zhou, Haibin Li, Nanjun Li, Jianxun Wang, Dongli Xiangtan Univ Sch Automat & Elect Informat Xiangtan 411105 Peoples R China Xiangtan Univ Sch Math & Computat Sci Xiangtan 411105 Peoples R China Shenzhen CBPM KEXIN Banking Technol CO LTD Shenzhen 518000 Peoples R China Shanghai Jiao Tong Univ Sch Elect Informat & Elect Engn Shanghai 200240 Peoples R China
The deep neural network model based on self-attention (SA) for obtaining rich contextual information has been widely adopted in semantic segmentation. However, the computational complexity of the standard self-attenti... 详细信息
来源: 评论
LocalBins: Improving Depth Estimation by Learning Local Distributions  17th
LocalBins: Improving Depth Estimation by Learning Local Dist...
收藏 引用
17th European Conference on Computer Vision (ECCV)
作者: Bhat, Shariq Farooq Alhashim, Ibraheem Wonka, Peter KAUST Thuwal Saudi Arabia Saudi Data & Artificial Intelligence Authority SD Natl Ctr Artificial Intelligence NCAI Riyadh Saudi Arabia
We propose a novel architecture for depth estimation from a single image. The architecture itself is based on the popular encoder-decoder architecture that is frequently used as a starting point for all dense regressi... 详细信息
来源: 评论
Deep Learning for Flash Drought Detection: A Case Study in Northeastern Brazil
收藏 引用
ATMOSPHERE 2024年 第7期15卷 761页
作者: Barbosa, Humberto A. Buriti, Catarina O. Kumar, T. V. Lakshmi Univ Fed Alagoas Lab Analise & Proc Imagens Satelites LAPIS Inst Ciencias Atmosfer AC Simoes Campus BR-57072900 Maceio Brazil Minist Sci Technol & Innovat MCTI Natl Semiarid Inst INSA BR-58100000 Campina Grande Brazil Jawaharlal Nehru Univ Sch Environm Sci New Mehrauli Rd New Delhi 110067 India
Flash droughts (FDs) pose significant challenges for accurate detection due to their short duration. Conventional drought monitoring methods have difficultly capturing this rapidly intensifying phenomenon accurately. ... 详细信息
来源: 评论
Identification of Flow Pressure-Driven Leakage Zones Using Improved EDNN-PP-LCNetV2 with Deep Learning Framework in Water Distribution System
收藏 引用
PROCESSES 2024年 第9期12卷 1992页
作者: Dong, Bo Shu, Shihu Li, Dengxin Donghua Univ Coll Environm Sci & Engn State Environm Protect Engn Ctr Pollut Treatment & Shanghai 201620 Peoples R China Chuzhou Vocat & Tech Coll Architectural Engn Inst Chuzhou 239000 Peoples R China
This study introduces a novel deep learning framework for detecting leakage in water distribution systems (WDSs). The key innovation lies in a two-step process: First, the WDS is partitioned using a K-means clustering... 详细信息
来源: 评论
Advancing Digital Image-Based Recognition of Soil Water Content: A Case Study in Bailu Highland, Shaanxi Province, China
收藏 引用
WATER 2024年 第8期16卷 1133-1133页
作者: Zhang, Yaozhong Zhang, Han Lan, Hengxing Li, Yunchuang Liu, Honggang Sun, Dexin Wang, Erhao Dong, Zhonghong Changan Univ Key Lab Highway Construct Technol & Equipment Minist Educ Xian 710064 Peoples R China Chinese Acad Sci Inst Geog Sci & Nat Resources Res State Key Lab Resources & Environm Informat Syst Beijing 100101 Peoples R China Changan Univ Sch Geol Engn & Geomat Xian 710064 Peoples R China China Construct First Grp Corp Ltd Xian 710075 Peoples R China
Soil water content (SWC) plays a vital role in agricultural management, geotechnical engineering, hydrological modeling, and climate research. Image-based SWC recognition methods show great potential compared to tradi... 详细信息
来源: 评论
GLD-Net: Improving Monaural Speech Enhancement by Learning Global and Local Dependency Features with GLD Block  23
GLD-Net: Improving Monaural Speech Enhancement by Learning G...
收藏 引用
Interspeech Conference
作者: Xu, Xinmeng Wang, Yang Jia, Jie Chen, Binbin Hao, Jianjun Trinity Coll Dublin Elect & Elect Engn Dublin Ireland Vivo AI Lab Shenzhen Peoples R China Hubei Univ Chinese Med Sch Foreign Languages Wuhan Peoples R China
For monaural speech enhancement, contextual information is important for accurate speech estimation. However, commonly used convolution neural networks (CNNs) are weak in capturing temporal contexts since they only bu... 详细信息
来源: 评论
C-LIENet: A Multi-Context Low-Light Image Enhancement Network
收藏 引用
IEEE ACCESS 2021年 9卷 31053-31064页
作者: Ravirathinam, Praveen Goel, Divyam Ranjani, J. Jennifer Birla Inst Technol & Sci Dept Comp Sci & Informat Syst Pilani 333031 Rajasthan India
Enhancement of low-light images is a challenging task due to the impact of low brightness, low contrast, and high noise. The inability to collect natural labeled data intensifies this problem further. Many researchers... 详细信息
来源: 评论
Deep Learning With Noisy Labels for Spatiotemporal Drought Detection
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2024年 62卷
作者: Cortes-Andres, Jordi Fernandez-Torres, Miguel-Angel Camps-Valls, Gustau Univ Valencia UV Image Proc Lab IPL Valencia 46980 Paterna Spain
Droughts pose significant challenges for accurate monitoring due to their complex spatiotemporal characteristics. Data-driven machine learning (ML) models have shown promise in detecting extreme events when enough wel... 详细信息
来源: 评论
The exploration of a Temporal Convolutional Network combined with encoder-decoder framework for runoff forecasting
收藏 引用
HYDROLOGY RESEARCH 2020年 第5期51卷 1136-1149页
作者: Lin, Kangling Sheng, Sheng Zhou, Yanlai Liu, Feng Li, Zhiyu Chen, Hua Xu, Chong-Yu Chen, Jie Guo, Shenglian Wuhan Univ State Key Lab Water Resources & Hydropower Engn S Wuhan 430072 Peoples R China Wuhan Univ Hubei Prov Key Lab Water Syst Sci Sponge City Con Wuhan 430072 Peoples R China Univ Oslo Dept Geosci POB 1047 N-0316 Oslo Norway Wuhan Univ Sch Comp Sci Wuhan 430072 Peoples R China Univ Illinois Dept Geog & Geog Informat Sci Urbana IL 61801 USA
The Temporal Convolutional Network (TCN) and TCN combined with the encoder-decoder architecture (TCN-ED) are proposed to forecast runoff in this study. Both models are trained and tested using the hourly data in the J... 详细信息
来源: 评论