咨询与建议

限定检索结果

文献类型

  • 28 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 34 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 32 篇 工学
    • 20 篇 计算机科学与技术...
    • 13 篇 电气工程
    • 7 篇 信息与通信工程
    • 4 篇 软件工程
    • 2 篇 机械工程
    • 2 篇 仪器科学与技术
    • 2 篇 电子科学与技术(可...
    • 2 篇 测绘科学与技术
    • 2 篇 生物医学工程(可授...
    • 1 篇 控制科学与工程
    • 1 篇 建筑学
    • 1 篇 土木工程
  • 9 篇 理学
    • 3 篇 物理学
    • 2 篇 数学
    • 2 篇 化学
    • 2 篇 地球物理学
    • 2 篇 生物学
  • 5 篇 医学
    • 3 篇 临床医学
    • 2 篇 特种医学
    • 1 篇 基础医学(可授医学...

主题

  • 34 篇 encoder-decoder ...
  • 9 篇 deep learning
  • 4 篇 decoding
  • 3 篇 semantic segment...
  • 3 篇 training
  • 2 篇 uncertainty quan...
  • 2 篇 super-resolution
  • 2 篇 blind deblurring
  • 2 篇 task analysis
  • 2 篇 generative adver...
  • 2 篇 joint tasks
  • 2 篇 image captioning
  • 2 篇 transformers
  • 2 篇 image segmentati...
  • 2 篇 u-net
  • 2 篇 semantics
  • 2 篇 parallel branche...
  • 2 篇 medical image se...
  • 2 篇 convolutional ne...
  • 1 篇 ct volumes

机构

  • 3 篇 sichuan univ col...
  • 2 篇 natl taiwan univ...
  • 2 篇 nanjing univ pos...
  • 2 篇 nanjing univ pos...
  • 2 篇 natl taiwan univ...
  • 2 篇 temple univ dept...
  • 1 篇 qualcomm technol...
  • 1 篇 riken riken ctr ...
  • 1 篇 de la salle univ...
  • 1 篇 tech univ denmar...
  • 1 篇 jd ai res 8 beic...
  • 1 篇 school of softwa...
  • 1 篇 indian inst tech...
  • 1 篇 shenasa ai tehra...
  • 1 篇 univ minnesota 2...
  • 1 篇 beihang univ sch...
  • 1 篇 towson univ dept...
  • 1 篇 remote sensing t...
  • 1 篇 univ sci & techn...
  • 1 篇 south westphalia...

作者

  • 2 篇 yao ting
  • 2 篇 hua kai-lung
  • 2 篇 guo jixiang
  • 2 篇 latecki longin j...
  • 2 篇 tan daniel stanl...
  • 2 篇 wu xiaofu
  • 2 篇 yi zhang
  • 2 篇 pan yingwei
  • 2 篇 zhou quan
  • 2 篇 mei tao
  • 2 篇 he tao
  • 2 篇 li yehao
  • 2 篇 kang bin
  • 2 篇 zhang suofei
  • 1 篇 wang yiming
  • 1 篇 kalviainen heikk...
  • 1 篇 zortea maciel
  • 1 篇 ghamisi pedram
  • 1 篇 ilao joel
  • 1 篇 hwang kao-shing

语言

  • 32 篇 英文
  • 1 篇 其他
检索条件"主题词=Encoder-Decoder networks"
34 条 记 录,以下是31-40 订阅
排序:
Single-Image Depth Inference Using Generative Adversarial networks
收藏 引用
SENSORS 2019年 第7期19卷 1708页
作者: Tan, Daniel Stanley Yao, Chih-Yuan Ruiz, Conrado, Jr. Hua, Kai-Lung Natl Taiwan Univ Sci & Technol Dept Comp Sci & Informat Engn Taipei 10607 Taiwan De La Salle Univ Dept Software Technol Manila 1004 Philippines Natl Taiwan Univ Sci & Technol Ctr Cyber Phys Syst Innovat Taipei 10607 Taiwan
Depth has been a valuable piece of information for perception tasks such as robot grasping, obstacle avoidance, and navigation, which are essential tasks for developing smart homes and smart cities. However, not all a... 详细信息
来源: 评论
IMG2DSM: Height Simulation From Single Imagery Using Conditional Generative Adversarial Net
收藏 引用
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 2018年 第5期15卷 794-798页
作者: Ghamisi, Pedram Yokoya, Naoto Remote Sensing Technol Inst Earth Observat Ctr SAR Signal Proc D-82234 Oberpfaffenhofen Wessling Germany RIKEN RIKEN Ctr Adv Intelligence Project Tokyo 1030027 Japan
This letter proposes a groundbreaking approach in the remote-sensing community to simulating the digital surface model (DSM) from a single optical image. This novel technique uses conditional generative adversarial ne... 详细信息
来源: 评论
Depth Map Upsampling via Multi-Modal Generative Adversarial Network
收藏 引用
SENSORS 2019年 第7期19卷 1587页
作者: Tan, Daniel Stanley Lin, Jun-Ming Lai, Yu-Chi Ilao, Joel Hua, Kai-Lung Natl Taiwan Univ Sci & Technol Dept Comp Sci & Informat Engn Taipei 10607 Taiwan De La Salle Univ Coll Comp Studies Ctr Automat Res Manila 1004 Philippines Natl Taiwan Univ Sci & Technol Ctr Cyber Phys Syst Innovat Taipei 10607 Taiwan
Autonomous robots for smart homes and smart cities mostly require depth perception in order to interact with their environments. However, depth maps are usually captured in a lower resolution as compared to RGB color ... 详细信息
来源: 评论
Protein secondary structure prediction by using deep learning method
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2017年 118卷 115-123页
作者: Wang, Yangxu Mao, Hua Yi, Zhang Sichuan Univ Coll Comp Sci Machine Intelligence Lab Chengdu 610065 Peoples R China
The prediction of protein structures directly from amino acid sequences is one of the biggest challenges in computational biology. It can be divided into several independent sub-problems in which protein secondary str... 详细信息
来源: 评论