In the development of cluster-based energy-efficientprotocols for wireless sensor networks (WSNs), a particularly challenging problem is the dynamic organization of sensors into a wireless communication network and t...
详细信息
In the development of cluster-based energy-efficientprotocols for wireless sensor networks (WSNs), a particularly challenging problem is the dynamic organization of sensors into a wireless communication network and the routing of sensed information from the field sensors to a remote base station (BS) in a manner that prolongs the lifetime of WSNs. This paper presents a new energy-efficient clustering protocol for WSNs, which can minimize total network energy dissipation while maximizing network lifetime. The protocol is divided into two parts. The first deals with constructing an infrastructure for the given WSN. A newly developed algorithm, based on a harmony search (HS), automatically determines the optimal number of clusters and allocates sensors into these clusters. This algorithm also eliminates the need to set the number of clusters a priori. The second part is concerned with the process of sending sensed data from nodes to their cluster head and then to the BS. A decentralized fuzzy clustering algorithm is proposed, where the selection of cluster heads in each round is locally made in each cluster during the network lifetime. Simulation results demonstrate that the proposed protocol can achieve an optimal number of clusters, prolong the network lifetime and increase the data delivery at the BS, when compared to other well-known clustering-based routingprotocols.
Development of energy-efficient routing protocols is a major concern in the design of underwater acoustic sensor networks (UASNs) since UASN nodes are typically powered by batteries, which are difficult to replace or ...
详细信息
Development of energy-efficient routing protocols is a major concern in the design of underwater acoustic sensor networks (UASNs) since UASN nodes are typically powered by batteries, which are difficult to replace or recharge in aquatic environments. This study proposes an optimal hop position-based energy-efficientrouting protocol for UASNs. Initially, the authors present an analytical model to compute the total energy consumption in a multi-hop UASN for deep water scenario, taking into account dependence of usable bandwidth on transmission distance and propagation characteristics of underwater acoustic channel. They derive analytical solution for the optimal hop distance that minimises total energy consumption in the network. They then propose an energy-efficientrouting protocol that relies on the computation of optimal hop distance. In their routing scheme, selection of forwarding nodes are based on their depth, residual energy and closeness to the computed optimal hop position corresponding to source node. Simulation results show that total energy consumption of the network gets reduced drastically, leading to improvement in network lifetime. Moreover, the proposed routing scheme makes use of courier nodes to handle coverage-hole problem. The efficient movement of courier nodes improves packet delivery ratio and network throughput.
暂无评论