咨询与建议

限定检索结果

文献类型

  • 22 篇 期刊文献
  • 4 篇 会议

馆藏范围

  • 26 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 20 篇 工学
    • 11 篇 计算机科学与技术...
    • 5 篇 土木工程
    • 4 篇 电气工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 控制科学与工程
    • 3 篇 环境科学与工程(可...
    • 3 篇 软件工程
    • 2 篇 仪器科学与技术
    • 2 篇 建筑学
    • 2 篇 测绘科学与技术
    • 1 篇 信息与通信工程
    • 1 篇 水利工程
    • 1 篇 交通运输工程
  • 6 篇 理学
    • 3 篇 地球物理学
    • 2 篇 数学
    • 1 篇 物理学
    • 1 篇 化学
    • 1 篇 地理学
    • 1 篇 生物学
  • 3 篇 医学
    • 2 篇 临床医学
    • 1 篇 公共卫生与预防医...
  • 2 篇 管理学
    • 1 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 1 篇 教育学
    • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 农学
    • 1 篇 农业资源与环境

主题

  • 26 篇 ensemble learnin...
  • 8 篇 machine learning
  • 3 篇 compressive stre...
  • 3 篇 feature selectio...
  • 2 篇 software fault p...
  • 2 篇 data balancing
  • 2 篇 gene expression ...
  • 1 篇 multi-label clas...
  • 1 篇 model interpreta...
  • 1 篇 mgo-grit iron ag...
  • 1 篇 heavy density co...
  • 1 篇 data-driven opti...
  • 1 篇 rusboost
  • 1 篇 structural resil...
  • 1 篇 gestational
  • 1 篇 diabetes
  • 1 篇 reproducibility
  • 1 篇 high temperature...
  • 1 篇 sustainable desi...
  • 1 篇 random forest

机构

  • 2 篇 southwest jiaoto...
  • 1 篇 department of ci...
  • 1 篇 china univ geosc...
  • 1 篇 xinjiang univ sc...
  • 1 篇 la trobe univ sc...
  • 1 篇 yildiz tech univ...
  • 1 篇 china univ geosc...
  • 1 篇 china geol surve...
  • 1 篇 department of co...
  • 1 篇 deakin univ sch ...
  • 1 篇 ben gurion univ ...
  • 1 篇 the maharaja say...
  • 1 篇 univ chinese aca...
  • 1 篇 guangzhou univ s...
  • 1 篇 tianjin univ sch...
  • 1 篇 iontek as istanb...
  • 1 篇 nazarbayev univ ...
  • 1 篇 univ louisiana l...
  • 1 篇 umm al qura univ...
  • 1 篇 hubei key lab ge...

作者

  • 2 篇 li tianrui
  • 2 篇 yohannese chubat...
  • 2 篇 asif usama
  • 1 篇 danial jahed arm...
  • 1 篇 sharifi arash
  • 1 篇 shabankhah mahmo...
  • 1 篇 kontorovich arye...
  • 1 篇 kong xiangfei
  • 1 篇 lee seunghye
  • 1 篇 bashir kamal
  • 1 篇 gupta megha
  • 1 篇 li xiaohang
  • 1 篇 chekina lena
  • 1 篇 ali rashid
  • 1 篇 fu xiaodong
  • 1 篇 khurshid faisal
  • 1 篇 shapira bracha
  • 1 篇 mohammad sadegh ...
  • 1 篇 zhang zhiqiang
  • 1 篇 degadwala shesha...

语言

  • 25 篇 英文
  • 1 篇 其他
检索条件"主题词=Ensemble Learning Algorithms"
26 条 记 录,以下是11-20 订阅
A novel hybrid methodology integrating pixel- and object-based techniques for mapping land use and land cover from high-resolution satellite data
收藏 引用
INTERNATIONAL JOURNAL OF REMOTE SENSING 2024年 第16期45卷 5640-5678页
作者: Ozturk, Muhammed Yusuf Colkesen, Ismail Gebze Tech Univ Dept Geomat Engn TR-41400 Gebze Kocaeli Turkiye
The classification of very high-resolution satellite imagery remains a focal point in remote sensing, attracting increased attention across diverse scientific disciplines. Various classification methods, including pix... 详细信息
来源: 评论
Early prediction of postpartum dyslipidemia in gestational diabetes using machine learning models
收藏 引用
SCIENTIFIC REPORTS 2025年 第1期15卷 1-13页
作者: Jiang, Zhifa Chen, Xiekun Lai, Yuhang Liu, Jingwen Ye, Xiangyun Chen, Ping Zhang, Zhen Huizhou First Maternal & Child Hlth Care Hosp Obstet & Gynaecol Huizhou 516000 Guangdong Peoples R China Huizhou Univ Sch Comp Sci & Engn Huizhou 516000 Guangdong Peoples R China
This study addresses a gap in research on predictive models for postpartum dyslipidemia in women with gestational diabetes mellitus (GDM). The goal was to develop a machine learning-based model to predict postpartum d... 详细信息
来源: 评论
Structural Damage Identification Using ensemble Deep Convolutional Neural Network Models
收藏 引用
Computer Modeling in Engineering & Sciences 2023年 第2期134卷 835-855页
作者: Mohammad Sadegh Barkhordari Danial Jahed Armaghani Panagiotis G.Asteris Department of Civil and Environmental Engineering Amirkabir University of TechnologyTehranIran Department of Urban Planning Engineering Networks and SystemsInstitute of Architecture and ConstructionSouth Ural State UniversityChelyabinskRussian Department of Computational Mechanics Laboratory School of Pedagogical and Technological EducationAthensGreece
The existing strategy for evaluating the damage condition of structures mostly focuses on feedback supplied by traditional visualmethods,which may result in an unreliable damage characterization due to inspector subje... 详细信息
来源: 评论
Super learner machine-learning algorithms for compressive strength prediction of high performance concrete
收藏 引用
STRUCTURAL CONCRETE 2023年 第2期24卷 2208-2228页
作者: Lee, Seunghye Ngoc-Hien Nguyen Karamanli, Armagan Lee, Jaehong Vo, Thuc P. Sejong Univ Deep Learning Architecture Res Ctr Dept Architectural Engn 209 Neungdong Ro Seoul 05006 South Korea HUTECH Univ CIRTech Inst Ho Chi Minh City Vietnam Istinye Univ Mech Engn Fac Engn & Nat Sci Istanbul Turkey La Trobe Univ Sch Comp Engn & Math Sci Bundoora Vic 3086 Australia
Because the proportion between the compressive strength of high-performance concrete (HPC) and its composition is highly nonlinear, more advanced regression methods are demanded to obtain better results. Super learner... 详细信息
来源: 评论
Development and evaluation of MgO-grit iron aggregate heavy density concrete for high temperature radiation shielding: Experimental and machine learning approach
收藏 引用
CONSTRUCTION AND BUILDING MATERIALS 2024年 439卷
作者: Wahab, Sarmed Khan, Inayat Ullah Khan, Muhammad Nasir Ayaz Ashraf, Mahmud Univ Engn & Technol Dept Civil Engn Taxila Pakistan Univ Engn & Technol Dept Civil Engn Peshawar Pakistan Natl Univ Sci & Technol Dept Struct Engn MCE Risalpur Campus Islamabad 24080 Pakistan Deakin Univ Sch Engn Geelong Vic 3216 Australia
This research focuses on the development and evaluation of heavy density concrete (HDC) for radiation shielding, utilizing both experimental and machine learning techniques. Various HDC specimens with different propor... 详细信息
来源: 评论
Integrating Machine learning ensembles for Landslide Susceptibility Mapping in Northern Pakistan
收藏 引用
REMOTE SENSING 2024年 第6期16卷 988页
作者: Ali, Nafees Chen, Jian Fu, Xiaodong Ali, Rashid Hussain, Muhammad Afaq Daud, Hamza Hussain, Javid Altalbe, Ali Chinese Acad Sci Inst Rock & Soil Mech State Key Lab Geomech & Geotech Engn Wuhan 430071 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China China Pakistan Joint Res Ctr Earth Sci Islamabad 45320 Pakistan Hubei Key Lab Geoenvironm Engn Wuhan 430071 Peoples R China Zhejiang Normal Univ Sch Math Sci Jinhua 321004 Peoples R China China Univ Geosci Sch Comp Sci Wuhan 430074 Peoples R China China Univ Geosci Badong Natl Observat & Res Stn Geohazards Wuhan 430074 Peoples R China Prince Sattam Bin Abdulaziz Univ Dept Comp Sci Al Kharj 11942 Saudi Arabia King Abdulaziz Univ Fac Comp & Informat Technol Jeddah 21589 Saudi Arabia
Natural disasters, notably landslides, pose significant threats to communities and infrastructure. Landslide susceptibility mapping (LSM) has been globally deemed as an effective tool to mitigate such threats. In this... 详细信息
来源: 评论
Predicting the mechanical properties of plastic concrete: An optimization method by using genetic programming and ensemble learners
收藏 引用
CASE STUDIES IN CONSTRUCTION MATERIALS 2024年 20卷
作者: Asif, Usama Javed, Muhammad Faisal Abuhussain, Maher Ali, Mujahid Khan, Waseem Akhtar Mohamed, Abdullah Nazarbayev Univ Dept Civil Engn Astana Kazakhstan Ghulam Ishaq Khan Inst Engn Sci & Technol Dept Civil Engn Topi Pakistan Univ Louisiana Lafayette Dept Civil Engn Lafayette LA 70503 USA Silesian Tech Univ Fac Transport & Aviat Engn Dept Transport Syst Traff Engn & Logist Krasinskiego 8 St PL-40019 Katowice Poland Umm Al Qura Univ Coll Engn & Comp Al Qunfudah Dept Civil & Environm Engn Mecca Saudi Arabia Future Univ Egypt Res Ctr New Cairo 11835 Egypt
This study presents a comparative analysis of individual and ensemble learning algorithms (ELAs) to predict the compressive strength (CS) and flexural strength (FS) of plastic concrete. Multilayer perceptron neuron ne... 详细信息
来源: 评论
AI-powered smart prediction of axial load in CFST columns: a sustainable and resilient structural engineering approach
收藏 引用
INNOVATIVE INFRASTRUCTURE SOLUTIONS 2025年 第5期10卷 1-40页
作者: Gupta, Megha Prakash, Satya Ghani, Sufyan Sharda Univ Dept Civil Engn Greater Noida India
This paper presents a novel ensemble learning-based framework for accurately predicting the ultimate axial compressive load-carrying capacity of S/RCFST columns, contributing to the development of resilient and sustai... 详细信息
来源: 评论
Ultra-Short-Term Building Cooling Load Prediction Model Based on Feature Set Construction and ensemble Machine learning
收藏 引用
IEEE ACCESS 2020年 8卷 178733-178745页
作者: Ding, Yan Su, Hao Kong, Xiangfei Zhang, Zhenqin Tianjin Univ Sch Environm Sci & Engn Tianjin Key Lab Built Environm & Energy Applicat Tianjin 300072 Peoples R China Hebei Univ Technol Sch Energy & Environm Engn Tianjin 300401 Peoples R China
As the requirements for the optimal control of building systems increase, the accuracy and speed of load predictions should also increase. However, the accuracy of load predictions is related to not only the predictio... 详细信息
来源: 评论
Making AdaBoost Less Prone to Overfitting on Noisy Datasets  6
Making AdaBoost Less Prone to Overfitting on Noisy Datasets
收藏 引用
6th International Conference on Web Research (ICWR)
作者: Modarres, Zainab Ghadiri Shabankhah, Mahmood Kamandi, Ali Univ Tehran Coll Engn Sch Engn Sci Tehran Iran
AdaBoost is perhaps one of the most well-known ensemble learning algorithms. In simple terms, the idea in AdaBoost is to train a number of weak learners in an increamental fashion where each new learner tries to focus... 详细信息
来源: 评论