咨询与建议

限定检索结果

文献类型

  • 15 篇 会议
  • 9 篇 期刊文献

馆藏范围

  • 24 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 24 篇 工学
    • 20 篇 计算机科学与技术...
    • 2 篇 电气工程
    • 2 篇 软件工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程
  • 10 篇 理学
    • 8 篇 数学
    • 5 篇 生物学
    • 1 篇 化学
    • 1 篇 系统科学
  • 8 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 4 篇 农学
    • 4 篇 作物学

主题

  • 24 篇 estimation-of-di...
  • 6 篇 cauchy distribut...
  • 6 篇 black-box optimi...
  • 6 篇 theory
  • 4 篇 linkage learning
  • 4 篇 model building
  • 4 篇 benchmarking
  • 4 篇 genetic algorith...
  • 4 篇 run time analysi...
  • 4 篇 runtime analysis
  • 2 篇 educational inst...
  • 2 篇 optimization
  • 2 篇 tabu search
  • 2 篇 epistasis
  • 2 篇 covariance matri...
  • 2 篇 evolutionary str...
  • 2 篇 search problems
  • 2 篇 gaussian distrib...
  • 2 篇 univariate margi...
  • 1 篇 neurons

机构

  • 3 篇 univ potsdam has...
  • 3 篇 czech tech univ ...
  • 2 篇 natl taiwan univ...
  • 2 篇 simon fraser uni...
  • 1 篇 inst polytech pa...
  • 1 篇 hasso plattner i...
  • 1 篇 wroclaw univ sci...
  • 1 篇 inst polytech pa...
  • 1 篇 czech tech univ ...
  • 1 篇 tsinghua univ de...
  • 1 篇 czech tech univ ...
  • 1 篇 cnrs ecole polyt...
  • 1 篇 key lab. of data...
  • 1 篇 ryerson univ dep...
  • 1 篇 ecole polytech l...
  • 1 篇 wroclaw univ sci...
  • 1 篇 univ birmingham ...
  • 1 篇 sorbonne univ cn...
  • 1 篇 ecole polytech l...
  • 1 篇 univ potsdam has...

作者

  • 7 篇 doerr benjamin
  • 6 篇 krejca martin s.
  • 5 篇 posik petr
  • 2 篇 naeem muhammad
  • 2 篇 komarnicki marci...
  • 2 篇 lee daniel c.
  • 2 篇 przewozniczek mi...
  • 2 篇 yu tian-li
  • 1 篇 wang shouda
  • 1 篇 chen ping-lin
  • 1 篇 mu chun-di
  • 1 篇 liu min
  • 1 篇 friedrich tobias
  • 1 篇 xirong li
  • 1 篇 pareek udit
  • 1 篇 qin jin
  • 1 篇 anpalagan alagan
  • 1 篇 muehlbrandt hann...
  • 1 篇 jieping xu
  • 1 篇 kubalik jiri

语言

  • 24 篇 英文
检索条件"主题词=Estimation-of-distribution algorithm"
24 条 记 录,以下是11-20 订阅
排序:
Comparative Mixing for DSMGA-II
Comparative Mixing for DSMGA-II
收藏 引用
Genetic and Evolutionary Computation Conference (GECCO)
作者: Komarnicki, Marcin M. Przewozniczek, Michal W. Durda, Tomasz M. Wroclaw Univ Sci & Technol Dept Computat Intelligence Wroclaw Poland
Dependency Structure Matrix Genetic algorithm-II (DSMGA-II) is a recently proposed optimization method that builds the linkage model on the base of the Dependency Structure Matrix (DSM). This model is used during the ... 详细信息
来源: 评论
Two approaches of using heavy tails in high dimensional EDA  14
Two approaches of using heavy tails in high dimensional EDA
收藏 引用
14th IEEE International Conference on Data Mining (IEEE ICDM)
作者: Sanyang, Momodou L. Muehlbrandt, Hanno Kaban, Ata Univ Birmingham Sch Comp Sci Edgbaston B15 2TT W Midlands England
We consider the problem of high dimensional black-box optimisation via estimation of distribution algorithms (EDA). The Gaussian distribution is commonly used as a search operator in most of the EDA methods. However t... 详细信息
来源: 评论
Comparison of Cauchy EDA and Rosenbrock's algorithms on the BBOB Noiseless Testbed  10
Comparison of Cauchy EDA and Rosenbrock's Algorithms on the ...
收藏 引用
12th Annual Genetic and Evolutionary Computation Conference (GECCO)
作者: Posik, Petr Czech Tech Univ Fac Elect Engn Dept Cybernet Prague 16627 6 Czech Republic
estimation-of-distribution algorithm equipped with Cauchy distribution (Cauchy EDA) is compared with Rosenbrock's local search algorithm. Both algorithms were already presented at the 2009 black-box optimization b... 详细信息
来源: 评论
A Tight Runtime Analysis for the cGA on Jump Functions-EDAs Can Cross Fitness Valleys at No Extra Cost
A Tight Runtime Analysis for the cGA on Jump Functions-EDAs ...
收藏 引用
Genetic and Evolutionary Computation Conference (GECCO)
作者: Doerr, Benjamin CNRS Ecole Polytech Lab Informat LIX Palaiseau France
We prove that the compact genetic algorithm (cGA) with hypothetical population size mu = Omega(root n log n) boolean AND poly(n) with high probability finds the optimum of any n-dimensional jump function with jump siz... 详细信息
来源: 评论
Two-edge Graphical Linkage Model for DSMGA-II  17
Two-edge Graphical Linkage Model for DSMGA-II
收藏 引用
Genetic and Evolutionary Computation Conference (GECCO)
作者: Chen, Ping-Lin Peng, Chun-Jen Lu, Chang-Yi Yu, Tian-Li Natl Taiwan Univ Dept Elect Engn Taiwan Evolutionary Intelligence Lab Taipei Taiwan
DSMGA-II, a model-based genetic algorithm, is capable of solving optimization problems via exploiting sub-structures of the problem. In terms of number of function evaluations (NFE), DSMGA-II has shown superior optimi... 详细信息
来源: 评论
The Univariate Marginal distribution algorithm Copes Well with Deception and Epistasis  1
收藏 引用
20th European Conference on Evolutionary Computation in Combinatorial Optimization (EvoCOP)
作者: Doerr, Benjamin Krejca, Martin S. Inst Polytech Paris Lab Informat LIX Ecole Polytech CNRS Palaiseau France Univ Potsdam Hasso Plattner Inst Potsdam Germany
In their recent work, Lehre and Nguyen (FOGA 2019) show that the univariate marginal distribution algorithm (UMDA) needs time exponential in the parent populations size to optimize the DeceivingLeadingBlocks (DLB) pro... 详细信息
来源: 评论
Faster Optimization Through Genetic Drift  18th
Faster Optimization Through Genetic Drift
收藏 引用
18th International Conference on Parallel Problem Solving from Nature (PPSN)
作者: Florescu, Cella Kaufmann, Marc Lengler, Johannes Schaller, Ulysse Swiss Fed Inst Technol Dept Comp Sci Zurich Switzerland
The compact Genetic algorithm (cGA), parameterized by its hypothetical population size K, offers a low-memory alternative to evolving a large offspring population of solutions. It evolves a probability distribution, b... 详细信息
来源: 评论
Comparison of Cauchy EDA and G3PCX algorithms on the BBOB Noiseless Testbed  10
Comparison of Cauchy EDA and G3PCX Algorithms on the BBOB No...
收藏 引用
12th Annual Genetic and Evolutionary Computation Conference (GECCO)
作者: Posik, Petr Czech Tech Univ Fac Elect Engn Dept Cybernet Prague 16627 6 Czech Republic
estimation-of-distribution algorithm equipped with Cauchy sampling distribution is compared with the generalized generation gap algorithm with parent centric crossover. Both algorithms were already presented at the 20... 详细信息
来源: 评论
Stochastic Local Search in Continuous Domains Questions to be Answered When Designing A Novel algorithm  10
Stochastic Local Search in Continuous Domains Questions to b...
收藏 引用
12th Annual Genetic and Evolutionary Computation Conference (GECCO)
作者: Posik, Petr Czech Tech Univ Fac Elect Engn Dept Cybernet Prague 16627 6 Czech Republic
Several population-based methods (with origins in the world of evolutionary strategies and estimation-of-distribution algorithms) for black-box optimization in continuous domains are surveyed in this article. The simi... 详细信息
来源: 评论
On measuring and improving the quality of linkage learning in modern evolutionary algorithms applied to solve partially additively separable problems
On measuring and improving the quality of linkage learning i...
收藏 引用
Genetic and Evolutionary Computation Conference (GECCO)
作者: Przewozniczek, Michal W. Frej, Bartosz Komarnicki, Marcin M. Wroclaw Univ Sci & Techn Dep Computat Intelligence Wroclaw Poland Wroclaw Univ Sci & Techn Fac Pure & Appl Math Wroclaw Poland
Linkage learning is frequently employed in modern evolutionary algorithms. High linkage quality may be the key to an evolutionary method's effectiveness. Similarly, the faulty linkage may be the reason for its poo... 详细信息
来源: 评论