咨询与建议

限定检索结果

文献类型

  • 104 篇 期刊文献
  • 81 篇 会议

馆藏范围

  • 185 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 175 篇 工学
    • 158 篇 计算机科学与技术...
    • 61 篇 电气工程
    • 23 篇 控制科学与工程
    • 14 篇 软件工程
    • 5 篇 力学(可授工学、理...
    • 5 篇 机械工程
    • 4 篇 信息与通信工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 土木工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 水利工程
    • 1 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 建筑学
    • 1 篇 石油与天然气工程
    • 1 篇 农业工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物工程
  • 32 篇 理学
    • 17 篇 数学
    • 14 篇 生物学
    • 2 篇 系统科学
    • 2 篇 统计学(可授理学、...
    • 1 篇 化学
  • 30 篇 管理学
    • 30 篇 管理科学与工程(可...
  • 2 篇 教育学
    • 2 篇 心理学(可授教育学...
  • 2 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
  • 1 篇 农学
    • 1 篇 作物学

主题

  • 185 篇 evolutionary mul...
  • 12 篇 multiobjective o...
  • 11 篇 many-objective o...
  • 9 篇 evolutionary com...
  • 7 篇 convergence
  • 6 篇 diversity
  • 6 篇 optimization
  • 6 篇 genetic algorith...
  • 6 篇 nsga-ii
  • 5 篇 evolutionary alg...
  • 5 篇 multiple criteri...
  • 5 篇 moea/d
  • 4 篇 clustering
  • 4 篇 multiobjective e...
  • 4 篇 statistics
  • 4 篇 data mining
  • 4 篇 decision making
  • 4 篇 sociology
  • 4 篇 pareto optimalit...
  • 3 篇 metaheuristics

机构

  • 7 篇 univ surrey dept...
  • 7 篇 city univ hong k...
  • 5 篇 osaka prefecture...
  • 4 篇 univ essex sch c...
  • 3 篇 anhui univ sch c...
  • 3 篇 univ birmingham ...
  • 3 篇 natl univ singap...
  • 3 篇 univ newcastle s...
  • 3 篇 donghua univ col...
  • 3 篇 univ warwick war...
  • 3 篇 carnegie mellon ...
  • 3 篇 indian inst tech...
  • 3 篇 univ malaga dept...
  • 3 篇 nanjing univ aer...
  • 3 篇 univ granada res...
  • 3 篇 univ granada dep...
  • 3 篇 european ctr sof...
  • 2 篇 polish acad sci ...
  • 2 篇 univ surrey dept...
  • 2 篇 hong kong polyte...

作者

  • 28 篇 ishibuchi hisao
  • 25 篇 nojima yusuke
  • 12 篇 jin yaochu
  • 8 篇 zhang xingyi
  • 8 篇 zhang qingfu
  • 8 篇 cordon oscar
  • 7 篇 tian ye
  • 5 篇 deb kalyanmoy
  • 5 篇 cheng ran
  • 5 篇 gong maoguo
  • 5 篇 brockhoff dimo
  • 4 篇 masuda hiroyuki
  • 4 篇 quirin arnaud
  • 4 篇 coello cac
  • 4 篇 chica manuel
  • 4 篇 ruiz ana b.
  • 4 篇 zhou aimin
  • 3 篇 yang shengxiang
  • 3 篇 trautmann heike
  • 3 篇 wagner tobias

语言

  • 179 篇 英文
  • 6 篇 其他
检索条件"主题词=Evolutionary Multiobjective Optimization"
185 条 记 录,以下是1-10 订阅
排序:
evolutionary multiobjective optimization for Automatic Agent-Based Model Calibration: A Comparative Study
收藏 引用
IEEE ACCESS 2021年 9卷 55284-55299页
作者: Moya, Ignacio Chica, Manuel Cordon, Oscar Univ Granada Andalusian Res Inst DaSCI Data Sci & Computat Int Granada 18071 Spain Univ Newcastle Sch Elect Engn & Comp Callaghan NSW 2308 Australia
Complex problems can be analyzed by using model simulation but its use is not straight-forward since modelers must carefully calibrate and validate their models before using them. This is specially relevant for models... 详细信息
来源: 评论
GPU-accelerated evolutionary multiobjective optimization Using Tensorized RVEA
GPU-accelerated Evolutionary Multiobjective Optimization Usi...
收藏 引用
Genetic and evolutionary Computation Conference (GECCO)
作者: Liang, Zhenyu Jiang, Tao Sun, Kebin Cheng, Ran Southern Univ Sci & Technol Shenzhen Guangdong Peoples R China Peng Cheng Lab Shenzhen Guangdong Peoples R China
evolutionary multiobjective optimization has witnessed remarkable progress during the past decades. However, existing algorithms often encounter computational challenges in large-scale scenarios, primarily attributed ... 详细信息
来源: 评论
Interactive evolutionary multiobjective optimization of Primer Design with Uncertain Objectives
Interactive Evolutionary Multiobjective Optimization of Prim...
收藏 引用
Genetic and evolutionary Computation Conference (GECCO)
作者: Mazumdar, Atanu Jain, Bhavya Mitra, Monisha Dhar, Prodyut Aalto Univ Dept Elect Engn & Automat EEA Espoo Finland IIT BHU Sch Biochem Engn Varanasi Uttar Pradesh India Univ Helsinki Dept Agr Sci Helsinki Finland
The choice of primer designs for polymerase chain reaction experiments affects the results. Designing optimal combinations of forward and reverse primers requires solving multiple conflicting objectives simultaneously... 详细信息
来源: 评论
Preference-Based evolutionary multiobjective optimization Through the Use of Reservation and Aspiration Points
收藏 引用
IEEE ACCESS 2021年 9卷 108861-108872页
作者: Gonzalez-Gallardo, Sandra Saborido, Ruben Ruiz, Ana B. Luque, Mariano Univ Malaga Dept Appl Econ Math Campus EL Ejido Malaga 29071 Spain Univ Malaga ITIS Software Campus Teatinos Malaga 29071 Spain
Preference-based evolutionary multiobjective optimization (EMO) algorithms approximate the region of interest (ROI) of the Pareto optimal front defined by the preferences of a decision maker (DM). Here, we propose a p... 详细信息
来源: 评论
Large-Scale evolutionary multiobjective optimization Assisted by Directed Sampling
收藏 引用
IEEE TRANSACTIONS ON evolutionary COMPUTATION 2021年 第4期25卷 724-738页
作者: Qin, Shufen Sun, Chaoli Jin, Yaochu Tan, Ying Fieldsend, Jonathan Taiyuan Univ Sci & Technol Sch Elect Informat Engn Taiyuan 030024 Peoples R China Taiyuan Univ Sci & Technol Dept Comp Sci & Technol Taiyuan 030024 Peoples R China Univ Surrey Dept Comp Sci Guildford GU2 7XH Surrey England Univ Exeter Dept Comp Sci Exeter EX4 4QF Devon England
It is particularly challenging for evolutionary algorithms to quickly converge to the Pareto front in large-scale multiobjective optimization. To tackle this problem, this article proposes a large-scale multiobjective... 详细信息
来源: 评论
Desirable Objective Ranges in Preference-Based evolutionary multiobjective optimization  24th
Desirable Objective Ranges in Preference-Based Evolutionary ...
收藏 引用
24th International Conference on the Applications of evolutionary Computation (EvoApplications) Held as Part of EvoStar Conference
作者: Gonzalez-Gallardo, Sandra Saborido, Ruben Ruiz, Ana B. Luque, Mariano Univ Malaga Dept Appl Econ Math E-29071 Malaga Spain Univ Malaga ITIS Software E-29071 Malaga Spain
In this paper, we propose a preference-based evolutionary multiobjective optimization algorithm, at which the preferences are given in the form of desirable ranges for the objective functions, i.e. by means of aspirat... 详细信息
来源: 评论
An Approximated Domination Relationship based on Binary Classifiers for evolutionary multiobjective optimization
An Approximated Domination Relationship based on Binary Clas...
收藏 引用
IEEE Congress on evolutionary Computation (IEEE CEC)
作者: Hao, Hao Zhou, Aimin Zhang, Hu East China Normal Univ Sch Comp Sci & Technol Shanghai Key Lab Multidimens Informat Proc Shanghai Peoples R China Beijing Electromech Engn Inst Sci & Technol Complex Syst Control & Intelligent Beijing Peoples R China
Preselection is an important strategy to improve evolutionary algorithms' performance by filtering out unpromising solutions before fitness evaluations. This paper introduces a preselection strategy based on an ap... 详细信息
来源: 评论
Automatic binary and ternary change detection in SAR images based on evolutionary multiobjective optimization
收藏 引用
APPLIED SOFT COMPUTING 2022年 第0期125卷
作者: Han, Wencheng Li, Hao Gong, Maoguo Xidian Univ Sch Elect Engn Key Lab Intelligent Percept & Image Understanding Minist Educ 2 South TaiBai Rd Xian 710071 Peoples R China
In most of the previous works, changed and unchanged regions are detected by analyzing the changes of backscattering coefficients for SAR images, which is termed as binary change detection. In fact, due to the increas... 详细信息
来源: 评论
evolutionary multiobjective optimization to target social network influentials in viral marketing
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2020年 147卷 113183-113183页
作者: Francisco Robles, Juan Chica, Manuel Cordon, Oscar Univ Granada Andalusian Res Inst DaSCI Data Sci & Computat Int E-18071 Granada Spain Univ Newcastle Sch Elect Engn & Comp Callaghan NSW 2308 Australia
Marketers have an important asset if they effectively target social networks' influentials. They can advertise products or services with free items or discounts to spread positive opinions to other consumers (i.e.... 详细信息
来源: 评论
Incremental learning-inspired mating restriction strategy for evolutionary multiobjective optimization
收藏 引用
APPLIED SOFT COMPUTING 2022年 127卷
作者: Liu, Tingrui Tan, Liguo Li, Xin Song, Shenmin Harbin Inst Technol Ctr Control Theory & Guidance Technol Harbin 150001 Peoples R China Harbin Inst Technol Res Ctr Basic Space Sci Harbin 150001 Peoples R China Shenzhen Inst Informat Technol Sino German Robot Sch Shenzhen 518172 Peoples R China
The prior knowledge from the problem property can boost the evolutionary multiobjective opti-mization (EMO). The existing machine learning model for knowledge mining in the EMO has led to enhanced performance on multi... 详细信息
来源: 评论