咨询与建议

限定检索结果

文献类型

  • 104 篇 期刊文献
  • 81 篇 会议

馆藏范围

  • 185 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 175 篇 工学
    • 158 篇 计算机科学与技术...
    • 61 篇 电气工程
    • 23 篇 控制科学与工程
    • 14 篇 软件工程
    • 5 篇 力学(可授工学、理...
    • 5 篇 机械工程
    • 4 篇 信息与通信工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 土木工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 水利工程
    • 1 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 建筑学
    • 1 篇 石油与天然气工程
    • 1 篇 农业工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物工程
  • 32 篇 理学
    • 17 篇 数学
    • 14 篇 生物学
    • 2 篇 系统科学
    • 2 篇 统计学(可授理学、...
    • 1 篇 化学
  • 30 篇 管理学
    • 30 篇 管理科学与工程(可...
  • 2 篇 教育学
    • 2 篇 心理学(可授教育学...
  • 2 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
  • 1 篇 农学
    • 1 篇 作物学

主题

  • 185 篇 evolutionary mul...
  • 12 篇 multiobjective o...
  • 11 篇 many-objective o...
  • 9 篇 evolutionary com...
  • 7 篇 convergence
  • 6 篇 diversity
  • 6 篇 optimization
  • 6 篇 genetic algorith...
  • 6 篇 nsga-ii
  • 5 篇 evolutionary alg...
  • 5 篇 multiple criteri...
  • 5 篇 moea/d
  • 4 篇 clustering
  • 4 篇 multiobjective e...
  • 4 篇 statistics
  • 4 篇 data mining
  • 4 篇 decision making
  • 4 篇 sociology
  • 4 篇 pareto optimalit...
  • 3 篇 metaheuristics

机构

  • 7 篇 univ surrey dept...
  • 7 篇 city univ hong k...
  • 5 篇 osaka prefecture...
  • 4 篇 univ essex sch c...
  • 3 篇 anhui univ sch c...
  • 3 篇 univ birmingham ...
  • 3 篇 natl univ singap...
  • 3 篇 univ newcastle s...
  • 3 篇 donghua univ col...
  • 3 篇 univ warwick war...
  • 3 篇 carnegie mellon ...
  • 3 篇 indian inst tech...
  • 3 篇 univ malaga dept...
  • 3 篇 nanjing univ aer...
  • 3 篇 univ granada res...
  • 3 篇 univ granada dep...
  • 3 篇 european ctr sof...
  • 2 篇 polish acad sci ...
  • 2 篇 univ surrey dept...
  • 2 篇 hong kong polyte...

作者

  • 28 篇 ishibuchi hisao
  • 25 篇 nojima yusuke
  • 12 篇 jin yaochu
  • 8 篇 zhang xingyi
  • 8 篇 zhang qingfu
  • 8 篇 cordon oscar
  • 7 篇 tian ye
  • 5 篇 deb kalyanmoy
  • 5 篇 cheng ran
  • 5 篇 gong maoguo
  • 5 篇 brockhoff dimo
  • 4 篇 masuda hiroyuki
  • 4 篇 quirin arnaud
  • 4 篇 coello cac
  • 4 篇 chica manuel
  • 4 篇 ruiz ana b.
  • 4 篇 zhou aimin
  • 3 篇 yang shengxiang
  • 3 篇 trautmann heike
  • 3 篇 wagner tobias

语言

  • 179 篇 英文
  • 6 篇 其他
检索条件"主题词=Evolutionary Multiobjective Optimization"
185 条 记 录,以下是11-20 订阅
排序:
An evolutionary multiobjective optimization Based Fuzzy Method for Overlapping Community Detection
收藏 引用
IEEE TRANSACTIONS ON FUZZY SYSTEMS 2020年 第11期28卷 2841-2855页
作者: Tian, Ye Yang, Shangshang Zhang, Xingyi Anhui Univ Inst Phys Sci Minist Educ Key Lab Intelligent Comp & Signal Proc Hefei 230601 Peoples R China Anhui Univ Minist Educ Sch Comp Sci & Technol Key Lab Intelligent Comp & Signal Proc Hefei 230601 Peoples R China
In the last decade, the detection of overlapping communities has received increasing attention in network science. Among various clustering techniques, the fuzzy clustering has been widely adopted in overlapping commu... 详细信息
来源: 评论
evolutionary multiobjective optimization algorithm for multimedia delivery in critical applications through Content-Aware Networks
收藏 引用
JOURNAL OF SUPERCOMPUTING 2017年 第3期73卷 993-1016页
作者: Batalla, Jordi Mongay Mavromoustakis, Constandinos X. Mastorakis, George Negru, Daniel Borcoci, Eugen Seidor SA Barcelona Spain Natl Inst Telecommun Warsaw Poland Univ Nicosia Nicosia Cyprus Technol Educ Inst Crete Iraklion Greece Univ Bordeaux CNRS LaBRI Talence France Univ Politehn Bucuresti Bucharest Romania
Critical applications which need to deliver multimedia through the Internet, may achieve the required quality of service thanks to the Content-Aware Networks (CAN). The key element of CAN is an efficient decision algo... 详细信息
来源: 评论
A Constrained Decomposition Approach With Grids for evolutionary multiobjective optimization
收藏 引用
IEEE TRANSACTIONS ON evolutionary COMPUTATION 2018年 第4期22卷 564-577页
作者: Cai, Xinye Mei, Zhiwei Fan, Zhun Zhang, Qingfu Nanjing Univ Aeronaut & Astronaut Coll Comp Sci & Technol Nanjing 210016 Jiangsu Peoples R China Collaborat Innovat Ctr Novel Software Technol & I Nanjing 210023 Jiangsu Peoples R China Shantou Univ Sch Engn Guangdong Prov Key Lab Digital Signal & Image Pro Shantou 515063 Peoples R China Shantou Univ Sch Engn Dept Elect Engn Shantou 515063 Peoples R China City Univ Hong Kong Dept Comp Sci Hong Kong Hong Kong Peoples R China
Decomposition-based multiobjective evolutionary algorithms (MOEAs) decompose a multiobjective optimization problem (MOP) into a set of scalar objective subproblems and solve them in a collaborative way. Commonly used ... 详细信息
来源: 评论
A multicriteria integral framework for agent-based model calibration using evolutionary multiobjective optimization and network-based visualization
收藏 引用
DECISION SUPPORT SYSTEMS 2019年 124卷 113111-113111页
作者: Moya, Ignacio Chica, Manuel Cordon, Oscar Univ Granada Andalusian Res Inst DaSCI Data Sci & Computat Int E-18071 Granada Spain Univ Newcastle Sch Elect Engn & Comp Callaghan NSW 2308 Australia
Automated calibration methods are a common approach to agent-based model calibration as they can estimate those parameters which cannot be set because of the lack of information. The modeler requires to validate the m... 详细信息
来源: 评论
A Clustering-Based Adaptive evolutionary Algorithm for multiobjective optimization With Irregular Pareto Fronts
收藏 引用
IEEE TRANSACTIONS ON CYBERNETICS 2019年 第7期49卷 2758-2770页
作者: Hua, Yicun Jin, Yaochu Hao, Kuangrong Donghua Univ Engn Res Ctr Digitized Text & Apparel Technol Minist Educ Shanghai 201620 Peoples R China Donghua Univ Coll Informat Sci & Technol Shanghai 201620 Peoples R China Taiyuan Univ Sci & Technol Dept Comp Sci & Technol Taiyuan 030024 Shanxi Peoples R China Univ Surrey Dept Comp Sci Guildford GU2 7XH Surrey England
Existing multiobjective evolutionary algorithms (MOEAs) perform well on multiobjective optimization problems (MOPs) with regular Pareto fronts in which the Pareto optimal solutions distribute continuously over the obj... 详细信息
来源: 评论
An Improvement Study of the Decomposition-Based Algorithm Global WASF-GA for evolutionary multiobjective optimization  18th
An Improvement Study of the Decomposition-Based Algorithm Gl...
收藏 引用
18th Conference of the Spanish-Association-for-Artificial-Intelligence (CAEPIA)
作者: Gonzalez-Gallardo, Sandra Saborido, Ruben Ruiz, Ana B. Luque, Mariano Univ Malaga Programa Doctorado Econ & Empresa C Ejido 6 E-29071 Malaga Spain Concordia Univ Dept Comp Sci & Software Engn 1455 Maisonneuve Blvd West Montreal PQ H3G 1M8 Canada Univ Malaga Dept Appl Econ Math C Ejido 6 E-29071 Malaga Spain
The convergence and the diversity of the decomposition-based evolutionary algorithm Global WASF-GA (GWASF-GA) relies on a set of weight vectors that determine the search directions for new non-dominated solutions in t... 详细信息
来源: 评论
multiobjective evolutionary Data Mining for Performance Improvement of evolutionary multiobjective optimization
Multiobjective Evolutionary Data Mining for Performance Impr...
收藏 引用
IEEE International Conference on Systems, Man, and Cybernetics (SMC)
作者: Nojima, Yusuke Tanigaki, Yuki Masuyama, Naoki Ishibuchi, Hisao Osaka Prefecture Univ Dept Comp Sci & Intelligent Syst Sakai Osaka 5998531 Japan Southern Univ Sci & Technol SUSTech Dept Comp Sci & Engn Shenzhen Peoples R China
In recent years, evolutionary multiobjective optimization (EMO) algorithms have frequently been used for engineering problems with some conflicting objective functions to be simultaneously optimized EMO algorithms can... 详细信息
来源: 评论
evolutionary multiobjective optimization for the Pickup and Delivery Problem with Time Windows and Demands
收藏 引用
MOBILE NETWORKS & APPLICATIONS 2016年 第1期21卷 175-190页
作者: Phan, Dung H. Suzuki, Junichi Univ Massachusetts Dept Comp Sci Boston MA 02125 USA 100 Morrissey Blvd Boston MA 02125 USA
This paper studies an evolutionary algorithm to solve a new multiobjective optimization problem, the Pickup and Delivery Problem with Time Windows and Demands (PDP-TW-D), which is applicable to operational optimizatio... 详细信息
来源: 评论
multiobjective Data Mining from Solutions by evolutionary multiobjective optimization  17
Multiobjective Data Mining from Solutions by Evolutionary Mu...
收藏 引用
Genetic and evolutionary Computation Conference (GECCO)
作者: Nojima, Yusuke Tanigaki, Yuki Ishibuchi, Hisao Osaka Prefecture Univ Sakai Osaka Japan Southern Univ Sci & Technol SUSTech Shenzhen Guangdong Peoples R China
One research direction in the field of evolutionary multiobjective optimization (EMO) is a post-analytical process of non-dominated solutions in order to analyze the relationship between design variables and objective... 详细信息
来源: 评论
GECCO 2016 Tutorial on evolutionary multiobjective optimization
GECCO 2016 Tutorial on Evolutionary Multiobjective Optimizat...
收藏 引用
Genetic and evolutionary Computation Conference (GECCO)
作者: Brockhoff, Dimo Wagner, Tobias INRIA Lille Nord Europe DOLPHIN Team Parc Sci Haute Borne 40Ave Halley Bat B Pk Plaza F-59650 Villeneuve Dascq France Tech Univ Dortmund Inst Machining Technol ISF MB 3Baroper Str 303 D-44227 Dortmund Germany
Many optimization problems are multiobjective in nature in the sense that multiple, conflicting criteria need to be optimized simultaneously. Due to the conflict between objectives, usually, no single optimal solution... 详细信息
来源: 评论