咨询与建议

限定检索结果

文献类型

  • 104 篇 期刊文献
  • 81 篇 会议

馆藏范围

  • 185 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 175 篇 工学
    • 158 篇 计算机科学与技术...
    • 61 篇 电气工程
    • 23 篇 控制科学与工程
    • 14 篇 软件工程
    • 5 篇 力学(可授工学、理...
    • 5 篇 机械工程
    • 4 篇 信息与通信工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 土木工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 水利工程
    • 1 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 建筑学
    • 1 篇 石油与天然气工程
    • 1 篇 农业工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物工程
  • 32 篇 理学
    • 17 篇 数学
    • 14 篇 生物学
    • 2 篇 系统科学
    • 2 篇 统计学(可授理学、...
    • 1 篇 化学
  • 30 篇 管理学
    • 30 篇 管理科学与工程(可...
  • 2 篇 教育学
    • 2 篇 心理学(可授教育学...
  • 2 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
  • 1 篇 农学
    • 1 篇 作物学

主题

  • 185 篇 evolutionary mul...
  • 12 篇 multiobjective o...
  • 11 篇 many-objective o...
  • 9 篇 evolutionary com...
  • 7 篇 convergence
  • 6 篇 diversity
  • 6 篇 optimization
  • 6 篇 genetic algorith...
  • 6 篇 nsga-ii
  • 5 篇 evolutionary alg...
  • 5 篇 multiple criteri...
  • 5 篇 moea/d
  • 4 篇 clustering
  • 4 篇 multiobjective e...
  • 4 篇 statistics
  • 4 篇 data mining
  • 4 篇 decision making
  • 4 篇 sociology
  • 4 篇 pareto optimalit...
  • 3 篇 metaheuristics

机构

  • 7 篇 univ surrey dept...
  • 7 篇 city univ hong k...
  • 5 篇 osaka prefecture...
  • 4 篇 univ essex sch c...
  • 3 篇 anhui univ sch c...
  • 3 篇 univ birmingham ...
  • 3 篇 natl univ singap...
  • 3 篇 univ newcastle s...
  • 3 篇 donghua univ col...
  • 3 篇 univ warwick war...
  • 3 篇 carnegie mellon ...
  • 3 篇 indian inst tech...
  • 3 篇 univ malaga dept...
  • 3 篇 nanjing univ aer...
  • 3 篇 univ granada res...
  • 3 篇 univ granada dep...
  • 3 篇 european ctr sof...
  • 2 篇 polish acad sci ...
  • 2 篇 univ surrey dept...
  • 2 篇 hong kong polyte...

作者

  • 28 篇 ishibuchi hisao
  • 25 篇 nojima yusuke
  • 12 篇 jin yaochu
  • 8 篇 zhang xingyi
  • 8 篇 zhang qingfu
  • 8 篇 cordon oscar
  • 7 篇 tian ye
  • 5 篇 deb kalyanmoy
  • 5 篇 cheng ran
  • 5 篇 gong maoguo
  • 5 篇 brockhoff dimo
  • 4 篇 masuda hiroyuki
  • 4 篇 quirin arnaud
  • 4 篇 coello cac
  • 4 篇 chica manuel
  • 4 篇 ruiz ana b.
  • 4 篇 zhou aimin
  • 3 篇 yang shengxiang
  • 3 篇 trautmann heike
  • 3 篇 wagner tobias

语言

  • 179 篇 英文
  • 6 篇 其他
检索条件"主题词=Evolutionary Multiobjective Optimization"
185 条 记 录,以下是21-30 订阅
排序:
Learning Value Functions in Interactive evolutionary multiobjective optimization
收藏 引用
IEEE TRANSACTIONS ON evolutionary COMPUTATION 2015年 第1期19卷 88-102页
作者: Branke, Juergen Greco, Salvatore Slowinski, Roman Zielniewicz, Piotr Univ Warwick Warwick Business Sch Coventry CV4 7AL W Midlands England Univ Catania Dept Econ & Business I-95124 Catania Italy Univ Portsmouth Portsmouth Business Sch Portsmouth PO1 2UP Hants England Poznan Univ Tech Inst Comp Sci PL-60965 Poznan Poland Polish Acad Sci Syst Res Inst PL-01447 Warshaw Poland
This paper proposes an interactive multiobjective evolutionary algorithm (MOEA) that attempts to learn a value function capturing the users' true preferences. At regular intervals, the user is asked to rank a sing... 详细信息
来源: 评论
An Efficient Approach to Nondominated Sorting for evolutionary multiobjective optimization
收藏 引用
IEEE TRANSACTIONS ON evolutionary COMPUTATION 2015年 第2期19卷 201-213页
作者: Zhang, Xingyi Tian, Ye Cheng, Ran Jin, Yaochu Anhui Univ Sch Comp Sci & Technol Minist Educ Key Lab Intelligent Comp & Signal Proc Hefei 230039 Peoples R China Univ Surrey Dept Comp Guildford GU2 7XH Surrey England
evolutionary algorithms have been shown to be powerful for solving multiobjective optimization problems, in which nondominated sorting is a widely adopted technique in selection. This technique, however, can be comput... 详细信息
来源: 评论
Visualization of Pareto Front Approximations in evolutionary multiobjective optimization: A Critical Review and the Prosection Method
收藏 引用
IEEE TRANSACTIONS ON evolutionary COMPUTATION 2015年 第2期19卷 225-245页
作者: Tusar, Tea Filipic, Bogdan Jozef Stefan Inst Dept Intelligent Syst SI-1000 Ljubljana Slovenia Jozef Stefan Int Postgrad Sch SI-1000 Ljubljana Slovenia
In evolutionary multiobjective optimization, it is very important to be able to visualize approximations of the Pareto front (called approximation sets) that are found by multiobjective evolutionary algorithms. While ... 详细信息
来源: 评论
evolutionary multiobjective optimization with hybrid selection principles
Evolutionary multiobjective optimization with hybrid selecti...
收藏 引用
Congress on evolutionary Computation
作者: Ke Li Kalyanmoy Deb Qingfu Zhang Department of Electrical and Computer Engineering Michigan State University East Lansing MI USA Department of Computer Science City University of Hong Kong Hong Kong
Achieving balance between convergence and diversity is a basic issue in evolutionary multiobjective optimization (EMO). In this paper, we propose a hybrid EMO algorithm that assigns different selection principles to t... 详细信息
来源: 评论
Adaptive directional local search strategy for hybrid evolutionary multiobjective optimization
收藏 引用
APPLIED SOFT COMPUTING 2014年 19卷 290-311页
作者: Kim, Hyoungjin Liou, Meng-Sing Sci Applicat Int Corp Cleveland OH 44135 USA NASA Glenn Res Ctr Cleveland OH 44135 USA
A novel adaptive local search method is developed for hybrid evolutionary multiobjective algorithms (EMOA) to improve convergence to the Pareto front in multiobjective optimization. The concepts of local and global ef... 详细信息
来源: 评论
GECCO'2014 tutorial on evolutionary multiobjective optimization  14
GECCO'2014 tutorial on evolutionary multiobjective optimizat...
收藏 引用
16th Genetic and evolutionary Computation Conference Companion, GECCO 2014 Companion
作者: Brockhoff, Dimo Inria Lille - Nord Europe Villeneuve d'Ascq France
Many optimization problems are multiobjective in nature in the sense that multiple, conflicting criteria need to be optimized simultaneously. Due to the conflict between objectives, usually, no single optimal solution... 详细信息
来源: 评论
evolutionary multiobjective optimization for Selecting Members of an Ensemble Streamflow Forecasting Model  13
Evolutionary Multiobjective Optimization for Selecting Membe...
收藏 引用
15th Genetic and evolutionary Computation Conference (GECCO)
作者: Brochero, Darwin Gagne, Christian Anctil, Francois Univ Laval Chaire Rech EDS Previs & Act Hydrol Dep Genie Civil & Genie Eaux Quebec City PQ G1V 0A6 Canada Univ Laval Dept Gen Elect & Gen Informat Lab Vis & Syst Numeriques Quebec City PQ G1V 0A6 Canada
We are proposing to use the Nondominated Sorting Genetic Algorithm II (NSGA-II) for optimizing a hydrological forecasting model of 800 simultaneous streamflow predictors. The optimization is based on the selection of ... 详细信息
来源: 评论
PRIMAL-DUAL TYPE evolutionary multiobjective optimization
收藏 引用
FOUNDATIONS OF COMPUTING AND DECISION SCIENCES 2013年 第4期38卷 267-275页
作者: Kaliszewski, Ignacy Miroforidis, Janusz Polish Acad Sci Syst Res Inst PL-01447 Warsaw Poland Treeffect Co PL-32420 Gdow Poland
A new, primal-dual type approach for derivation of Pareto front approximations with evolutionary computations is proposed. At present, evolutionary multiobjective optimization algorithms derive a discrete approximatio... 详细信息
来源: 评论
Indicator-based Selection in evolutionary multiobjective optimization Algorithms Based On the Desirability Index
收藏 引用
JOURNAL OF MULTI-CRITERIA DECISION ANALYSIS 2013年 第5-6期20卷 319-337页
作者: Trautmann, Heike Wagner, Tobias Biermann, Dirk Weihs, Claus Univ Munster Informat Syst & Stat Grp D-48149 Munster Germany TU Dortmund Chair Computat Stat D-44221 Dortmund Germany TU Dortmund Inst Machining Technol ISF D-44227 Dortmund Germany
In multiobjective optimization, the identification of practically relevant solutions on the Pareto-optimal front is an important research topic. Desirability functions (DFs) allow the preferences of the decision maker... 详细信息
来源: 评论
Difficulty in evolutionary multiobjective optimization of Discrete Objective Functions with Different Granularities
Difficulty in Evolutionary Multiobjective Optimization of Di...
收藏 引用
7th International Conference on evolutionary Multi-Criterion optimization (EMO)
作者: Ishibuchi, Hisao Yamane, Masakazu Nojima, Yusuke Osaka Prefecture Univ Dept Comp Sci & Intelligent Syst Grad Sch Engn Naka Ku Sakai Osaka 5998531 Japan
Objective functions are discrete in combinatorial optimization. In general, the number of possible values of a discrete objective is totally different from problem to problem. That is, discrete objectives have totally... 详细信息
来源: 评论