咨询与建议

限定检索结果

文献类型

  • 436 篇 期刊文献
  • 206 篇 会议
  • 1 篇 学位论文
  • 1 篇 资讯

馆藏范围

  • 644 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 466 篇 工学
    • 260 篇 计算机科学与技术...
    • 147 篇 软件工程
    • 124 篇 电气工程
    • 85 篇 信息与通信工程
    • 59 篇 控制科学与工程
    • 19 篇 仪器科学与技术
    • 19 篇 生物工程
    • 18 篇 安全科学与工程
    • 16 篇 机械工程
    • 16 篇 生物医学工程(可授...
    • 14 篇 电子科学与技术(可...
    • 13 篇 化学工程与技术
    • 12 篇 土木工程
    • 8 篇 光学工程
    • 7 篇 测绘科学与技术
  • 436 篇 理学
    • 349 篇 数学
    • 340 篇 统计学(可授理学、...
    • 49 篇 生物学
    • 37 篇 物理学
    • 26 篇 系统科学
    • 12 篇 化学
    • 8 篇 地球物理学
  • 65 篇 管理学
    • 39 篇 管理科学与工程(可...
    • 14 篇 工商管理
    • 14 篇 图书情报与档案管...
    • 9 篇 公共管理
  • 43 篇 医学
    • 26 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 8 篇 公共卫生与预防医...
  • 24 篇 经济学
    • 21 篇 应用经济学
  • 13 篇 农学
  • 6 篇 法学
  • 4 篇 教育学
  • 3 篇 文学

主题

  • 644 篇 expectation maxi...
  • 20 篇 maximum likeliho...
  • 16 篇 gaussian mixture...
  • 15 篇 parameter estima...
  • 14 篇 expectation-maxi...
  • 13 篇 hidden markov mo...
  • 11 篇 maximum likeliho...
  • 9 篇 system identific...
  • 9 篇 kalman filter
  • 8 篇 image segmentati...
  • 7 篇 mixture models
  • 7 篇 missing data
  • 6 篇 hidden markov mo...
  • 5 篇 multiple models
  • 5 篇 clustering
  • 5 篇 bayesian informa...
  • 5 篇 channel estimati...
  • 4 篇 expectation maxi...
  • 4 篇 maximum likeliho...
  • 4 篇 em algorithm

机构

  • 4 篇 univ alberta dep...
  • 4 篇 institute of aco...
  • 3 篇 imt school for a...
  • 3 篇 school of mathem...
  • 3 篇 school of automa...
  • 3 篇 univ melbourne d...
  • 2 篇 department of au...
  • 2 篇 tsinghua univers...
  • 2 篇 mcmaster univ de...
  • 2 篇 zhongtai securit...
  • 2 篇 zhejiang univ co...
  • 2 篇 northeastern uni...
  • 2 篇 univ so calif in...
  • 2 篇 univ atacama fac...
  • 2 篇 department of ma...
  • 2 篇 gaoling school o...
  • 2 篇 vinai research v...
  • 2 篇 jiangnan univ sc...
  • 2 篇 center for machi...
  • 2 篇 department of ch...

作者

  • 8 篇 huang biao
  • 6 篇 krishnamurthy v
  • 5 篇 shlezinger nir
  • 5 篇 elliott rj
  • 4 篇 yan linjie
  • 4 篇 hao chengpeng
  • 4 篇 doerschuk peter ...
  • 4 篇 schmid luca
  • 4 篇 schmalen laurent
  • 4 篇 raviv tomer
  • 4 篇 orlando danilo
  • 3 篇 osoba osonde
  • 3 篇 kim inyoung
  • 3 篇 yu chengpu
  • 3 篇 paliwal kk
  • 3 篇 ge zhiqiang
  • 3 篇 si xiaosheng
  • 3 篇 pal suvra
  • 3 篇 lei chen
  • 3 篇 kosko bart

语言

  • 470 篇 英文
  • 168 篇 其他
  • 3 篇 中文
  • 1 篇 日文
检索条件"主题词=Expectation Maximization Algorithm"
644 条 记 录,以下是301-310 订阅
排序:
MaxMin-RLHF: Alignment with Diverse Human Preferences
arXiv
收藏 引用
arXiv 2024年
作者: Chakraborty, Souradip Qiu, Jiahao Yuan, Hui Koppel, Alec Manocha, Dinesh Huang, Furong Bedi, Amrit Singh Wang, Mengdi Department of Computer Science University of Maryland College ParkMD United States Department of Electrical and Computer Engineering Princeton University NJ United States JP Morgan Chase AI Research New York United States Department of Computer Science University of Central Florida FL United States
Reinforcement Learning from Human Feedback (RLHF) aligns language models to human preferences by employing a singular reward model derived from preference data. However, the single reward model overlooks the rich dive... 详细信息
来源: 评论
Hidden Markov Models for Multivariate Panel Data
arXiv
收藏 引用
arXiv 2024年
作者: Neal, Mackenzie R. Sochaniwsky, Alexa A. McNicholas, Paul D. Department of Mathematics & Statistics McMaster University ON Canada
While advances continue to be made in model-based clustering, challenges persist in modeling various data types such as panel data. Multivariate panel data present difficulties for clustering algorithms because they a... 详细信息
来源: 评论
BAYESIAN EXPERIMENTAL DESIGN VIA CONTRASTIVE DIFFUSIONS
arXiv
收藏 引用
arXiv 2024年
作者: Iollo, Jacopo Heinkelé, Christophe Alliez, Pierre Forbes, Florence Université Grenoble Alpes Inria CNRS G-INP France Cerema Endsum Strasbourg France Université Côte d’Azur Inria France
Bayesian Optimal Experimental Design (BOED) is a powerful tool to reduce the cost of running a sequence of experiments. When based on the Expected Information Gain (EIG), design optimization corresponds to the maximiz... 详细信息
来源: 评论
Mini-batch Submodular maximization
arXiv
收藏 引用
arXiv 2024年
作者: Schwartzman, Gregory JAIST Japan
We present the first mini-batch algorithm for maximizing a non-negative monotone decomposable submodular function, (Equation presented), under a set of constraints. We consider two sampling approaches: uniform and wei... 详细信息
来源: 评论
Probabilistic Targeted Factor Analysis
arXiv
收藏 引用
arXiv 2024年
作者: Herculano, Miguel C. Montoya-Blandón, Santiago Adam Smith Business School University of Glasgow United Kingdom
We develop a probabilistic variant of Partial Least Squares (PLS) we call Probabilistic Targeted Factor Analysis (PTFA), which can be used to extract common factors in predictors that are useful to predict a set of pr... 详细信息
来源: 评论
Learning Mixtures of Experts with EM
arXiv
收藏 引用
arXiv 2024年
作者: Fruytier, Quentin Mokhtari, Aryan Sanghavi, Sujay Department of Electrical and Computer Engineering The University of Texas at Austin AustinTX United States
Mixtures of Experts (MoE) are Machine Learning models that involve partitioning the input space, with a separate "expert" model trained on each partition. Recently, MoE have become popular as components in t... 详细信息
来源: 评论
Variational Probabilistic Multi-Hypothesis Tracking
SSRN
收藏 引用
SSRN 2024年
作者: Shin, Hyo-Sang Xu, Shuoyuan Tsourdos, Antonios School of Aerospace Transport and Manufacturing Cranfield University CranfieldMK43 0AL United Kingdom Cho Chun Shik Graduate School of Mobility Korea Advanced Institute of Science and Technology Daejeon34141 Korea Republic of
This paper proposes a novel multi-target tracking (MTT) algorithm for scenarios with arbitrary numbers of measurements per target. We propose the variational probabilistic multi-hypothesis tracking (VPMHT) algorithm b... 详细信息
来源: 评论
Fairness in Social Influence maximization via Optimal Transport
arXiv
收藏 引用
arXiv 2024年
作者: Chowdhary, Shubham De Pasquale, Giulia Lanzetti, Nicolas Stoica, Ana-Andreea Dörfler, Florian ETH Zürich Switzerland Eindhoven University of Technology Netherlands Max Planck Institute Tübingen Germany
We study fairness in social influence maximization, whereby one seeks to select seeds that spread a given information throughout a network, ensuring balanced outreach among different communities (e.g. demographic grou... 详细信息
来源: 评论
Cross-Entropy Optimization for Hyperparameter Optimization in Stochastic Gradient-based Approaches to Train Deep Neural Networks
arXiv
收藏 引用
arXiv 2024年
作者: Li, Kevin Li, Fulu
In this paper, we present a cross-entropy optimization method for hyperparameter optimization in stochastic gradient-based approaches to train deep neural networks. The value of a hyperparameter of a learning algorith... 详细信息
来源: 评论
A Gradient Analysis Framework for Rewarding Good and Penalizing Bad Examples in Language Models
arXiv
收藏 引用
arXiv 2024年
作者: Tuan, Yi-Lin Wang, William Yang University of California Santa Barbara United States
Beyond maximum likelihood estimation (MLE), the standard objective of a language model (LM) that optimizes good examples probabilities, many studies have explored ways that also penalize bad examples for enhancing the... 详细信息
来源: 评论