咨询与建议

限定检索结果

文献类型

  • 14 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 15 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 15 篇 工学
    • 14 篇 计算机科学与技术...
    • 6 篇 电气工程
    • 2 篇 控制科学与工程
    • 1 篇 机械工程
    • 1 篇 电子科学与技术(可...
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 理学
    • 1 篇 生物学

主题

  • 15 篇 expensive many-o...
  • 5 篇 surrogate-assist...
  • 3 篇 surrogate-assist...
  • 3 篇 kriging model
  • 2 篇 surrogate model
  • 2 篇 kriging
  • 2 篇 surrogate assist...
  • 2 篇 classification
  • 1 篇 model management
  • 1 篇 pareto-based bi-...
  • 1 篇 adaptive infill ...
  • 1 篇 radial basis fun...
  • 1 篇 evolutionary mul...
  • 1 篇 co-evolution
  • 1 篇 entropy search
  • 1 篇 statistics
  • 1 篇 engineering opti...
  • 1 篇 sorting
  • 1 篇 radial space div...
  • 1 篇 reference vector

机构

  • 2 篇 xidian univ sch ...
  • 2 篇 shandong normal ...
  • 2 篇 xian univ archit...
  • 1 篇 cinvestav tamaul...
  • 1 篇 south china univ...
  • 1 篇 taiyuan univ sci...
  • 1 篇 nanchang inst te...
  • 1 篇 nanjing univ inf...
  • 1 篇 natl nat sci fdn...
  • 1 篇 college of infor...
  • 1 篇 zhengzhou univ l...
  • 1 篇 northeastern uni...
  • 1 篇 nanyang technol ...
  • 1 篇 univ surrey dept...
  • 1 篇 northeastern sta...
  • 1 篇 anhui univ key l...
  • 1 篇 xian univ archit...
  • 1 篇 harbin inst tech...
  • 1 篇 north univ china...
  • 1 篇 dalian univ tech...

作者

  • 3 篇 wang handing
  • 2 篇 gu qinghua
  • 2 篇 jin yaochu
  • 2 篇 he cheng
  • 1 篇 tan yanyan
  • 1 篇 wang xinjie
  • 1 篇 li junqing
  • 1 篇 xu hongbin
  • 1 篇 bian hongli
  • 1 篇 du wei
  • 1 篇 chu shu-chu
  • 1 篇 kang gaoli
  • 1 篇 zhou yufeng
  • 1 篇 lai xiaonan
  • 1 篇 tian jie
  • 1 篇 zhai zhaomin
  • 1 篇 song zhenshou
  • 1 篇 zhang shuai
  • 1 篇 pan anqi
  • 1 篇 lin qiuzhen

语言

  • 15 篇 英文
检索条件"主题词=Expensive many-objective optimization"
15 条 记 录,以下是1-10 订阅
排序:
Knee-oriented expensive many-objective optimization via aggregation-dominance: A multi-task perspective
收藏 引用
SWARM AND EVOLUTIONARY COMPUTATION 2025年 92卷
作者: Tang, Junfeng Wang, Handing Jin, Yaochu Xidian Univ Sch Artificial Intelligence Xian 710071 Peoples R China Westlake Univ Sch Engn Hangzhou 310030 Peoples R China
Given the costs to implement whole Pareto optimal solutions, users often prefer solutions of interest, like knee points, which represent naturally preferred solutions without a specific bias. Recent surrogate-assisted... 详细信息
来源: 评论
An expensive many-objective optimization Algorithm Based on Efficient Expected Hypervolume Improvement
收藏 引用
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2023年 第6期27卷 1822-1836页
作者: Pang, Yong Wang, Yitang Zhang, Shuai Lai, Xiaonan Sun, Wei Song, Xueguan Dalian Univ Technol Sch Mech Engn Dalian 116024 Peoples R China
The expected hypervolume improvement (EHVI) is one of the most popular infill criteria for multiobjective optimization problems. Although it has a significant advantage in exploring potential Pareto-optimal solutions,... 详细信息
来源: 评论
A diverse/converged individual competition algorithm for computationally expensive many-objective optimization
收藏 引用
APPLIED INTELLIGENCE 2024年 第3期54卷 2851-2866页
作者: Lin, Jie Zhang, Sheng Xin Zheng, Shao Yong Natl Nat Sci Fdn China Guangzhou Peoples R China
Surrogate-assisted evolutionary algorithms (SAEAs) are popular for solving expensive optimization problems. However, most existing SAEAs are designed for solving single-objective or multiobjective optimization problem... 详细信息
来源: 评论
A Classification-Based Surrogate-Assisted Evolutionary Algorithm for expensive many-objective optimization
收藏 引用
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2019年 第1期23卷 74-88页
作者: Pan, Linqiang He, Cheng Tian, Ye Wang, Handing Zhang, Xingyi Jin, Yaochu Huazhong Univ Sci & Technol Key Lab Image Informat Proc & Intelligent Control Educ Minist China Sch Automat Wuhan 430074 Hubei Peoples R China Zhengzhou Univ Light Ind Sch Elect & Informat Engn Zhengzhou 450002 Henan Peoples R China Univ Surrey Dept Comp Sci Guildford GU2 7XH Surrey England Anhui Univ Key Lab Intelligent Comp & Signal Proc Minist Educ Sch Comp Sci & Technol Hefei 230039 Anhui Peoples R China Northeastern Univ State Key Lab Synthet Automat Proc Ind Shenyang 110819 Liaoning Peoples R China
Surrogate-assisted evolutionary algorithms (SAEAs) have been developed mainly for solving expensive optimization problems where only a small number of real fitness evaluations are allowed. Most existing SAEAs are desi... 详细信息
来源: 评论
A framework for expensive many-objective optimization with Pareto-based bi-indicator infill sampling criterion
收藏 引用
MEMETIC COMPUTING 2022年 第2期14卷 179-191页
作者: Song, Zhenshou Wang, Handing Xu, Hongbin Xidian Univ Sch Artificial Intelligence Xian 710071 Shaanxi Peoples R China South China Univ Technol Sch Software Engn Guangzhou 510006 Peoples R China
Surrogate-assisted many-objective optimization is to locate Pareto optimal solutions using a limited number of function evaluations. Most existing surrogate-assisted evolutionary algorithms are designed to embed in a ... 详细信息
来源: 评论
An improved bagging ensemble surrogate-assisted evolutionary algorithm for expensive many-objective optimization
收藏 引用
APPLIED INTELLIGENCE 2022年 第6期52卷 5949-5965页
作者: Gu, Qinghua Zhang, Xiaoyue Chen, Lu Xiong, Naixue Xian Univ Architecture & Technol Sch Management Xian Peoples R China Xian Univ Architecture & Technol Xian Key Lab Intelligent Ind Percept Calculat & D Xian Peoples R China Northeastern State Univ Dept Math & Comp Sci Tahlequah OK USA
When the surrogate-assisted evolutionary algorithm is used to solve expensive many-objective optimization problems, the surrogate is used to approximate the expensive fitness functions. However, with the increase of t... 详细信息
来源: 评论
A Hybrid Surrogate-Assisted Evolutionary Algorithm for Computationally expensive many-objective optimization
A Hybrid Surrogate-Assisted Evolutionary Algorithm for Compu...
收藏 引用
IEEE Congress on Evolutionary Computation (IEEE CEC)
作者: Wan, Kanzhen He, Cheng Camacho, Auraham Shang, Ke Cheng, Ran Ishibuchi, Hisao Southern Univ Sci & Technol Shenzhen Key Lab Computat Intelligence Dept Comp Sci & Engn Shenzhen 518055 Guangdong Peoples R China Harbin Inst Technol Sch Comp Sci & Engn Harbin 150001 Heilongjiang Peoples R China CINVESTAV Tamaulipas Victoria Tamaulipas Mexico
many real-world optimization problems are challenging because the evaluation of solutions is computationally expensive. As a result, the number of function evaluations is limited. Surrogate-assisted evolutionary algor... 详细信息
来源: 评论
A Kriging-assisted evolutionary algorithm with multiple infill sampling for expensive many-objective optimization
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2024年 135卷
作者: Zhu, Qingling Kang, Gaoli Wu, Xunfeng Lin, Qiuzhen Tang, Huimei Chen, Jianyong Shenzhen Univ Coll Comp Sci & Software Engn Shenzhen Peoples R China
Surrogate -assisted evolutionary algorithms (SAEAs) have been extensively used to solve computationally expensive multi -objective optimization problems (MOPs) as they can obtain a set of satisfyingly optimal solution... 详细信息
来源: 评论
A composite surrogate-assisted evolutionary algorithm for expensive many-objective optimization
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2024年 236卷
作者: Zhai, Zhaomin Tan, Yanyan Li, Xiaojie Li, Junqing Zhang, Huaxiang Shandong Normal Univ Sch Informat Sci & Engn Jinan 250358 Peoples R China Shandong Normal Univ Inst Data Sci & Technol Jinan Peoples R China
In many practical many-objective optimization problems, the computational cost of real evaluation is often high. To solve such problems, surrogate-assisted evolutionary algorithms (SAEAs) are effective methods that us... 详细信息
来源: 评论
A surrogate-assisted evolutionary algorithm for expensive many-objective optimization in the refining process
收藏 引用
SWARM AND EVOLUTIONARY COMPUTATION 2022年 69卷 100988-100988页
作者: Han, Dong Du, Wenli Wang, Xinjie Du, Wei East China Univ Sci & Technol Key Lab Smart Mfg Energy Chem Proc Minist Educ Shanghai 200237 Peoples R China
Computationally expensive optimization problems are difficult for an evolutionary algorithm within limited fitness evaluations, especially for many-objective optimization. To remedy this issue, a surrogate-assisted de... 详细信息
来源: 评论