咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程

主题

  • 1 篇 support vector m...
  • 1 篇 automatic modula...
  • 1 篇 multiple-input-m...
  • 1 篇 computational co...
  • 1 篇 mimo communicati...
  • 1 篇 modulation recog...
  • 1 篇 wireless channel...
  • 1 篇 statistical patt...
  • 1 篇 environmental aw...
  • 1 篇 cognitive radio
  • 1 篇 fb-amc algorithm...
  • 1 篇 statistical anal...
  • 1 篇 feature based au...
  • 1 篇 cognitive radio ...
  • 1 篇 artificial neura...
  • 1 篇 optimal model
  • 1 篇 blind feature cl...
  • 1 篇 k-nearest neighb...

机构

  • 1 篇 univ valencienne...
  • 1 篇 higher inst tech...
  • 1 篇 univ lille 1 tel...

作者

  • 1 篇 kharbech sofiane
  • 1 篇 zwingelstein-col...
  • 1 篇 dayoub iyad
  • 1 篇 simon eric pierr...

语言

  • 1 篇 英文
检索条件"主题词=FB-AMC algorithms"
1 条 记 录,以下是1-10 订阅
排序:
On classifiers for blind feature-based automatic modulation classification over multiple-input-multiple-output channels
收藏 引用
IET COMMUNICATIONS 2016年 第7期10卷 790-795页
作者: Kharbech, Sofiane Dayoub, Iyad Zwingelstein-Colin, Marie Simon, Eric Pierre Higher Inst Technol Studies Gabes Dept Commun & Informat Technol STIC Gabes 6011 Tunisia Univ Valenciennes & Hainaut Cambresis IEMN DOAE Lab UMR CNRS 8520 F-59313 Valenciennes France Univ Lille 1 TELICE Lab IEMN UMR CNRS 8520 F-59100 Lille France
Modulation recognition is crucial for a good environmental awareness required by cognitive radio systems. In this study, the authors design and compare models of four among the most commonly used classifiers for featu... 详细信息
来源: 评论