Euclidean distance function based fuzzy clustering algorithms can only be used to detect spherical structural clusters. Gustafson-Kessel (GK) clustering algorithm and Gath-Geva (GG) clustering algorithm were developed...
详细信息
ISBN:
(纸本)9783037850046
Euclidean distance function based fuzzy clustering algorithms can only be used to detect spherical structural clusters. Gustafson-Kessel (GK) clustering algorithm and Gath-Geva (GG) clustering algorithm were developed to detect non-spherical structural clusters by employing Mahalanobis distance in objective function, however, both of them need to add some constrains for Mahalanobis distance. In this paper, the authors' improved Fuzzy C-Means algorithm based on common Mahalanobis distance (fcm-cm) is used to identify the mastery concepts in linear algebra, for comparing the performances with other four partition algorithms;fcm-M, GG, GK, and fcm. The result shows that fcm-cm has better performance than others.
Some of the well-known fuzzy clustering algorithms are based on Euclidean distance function, which can only be used to detect spherical structural clusters. Gustafson-Kessel (GK) clustering algorithm and Gath-Geva (GG...
详细信息
Some of the well-known fuzzy clustering algorithms are based on Euclidean distance function, which can only be used to detect spherical structural clusters. Gustafson-Kessel (GK) clustering algorithm and Gath-Geva (GG) clustering algorithm were developed to detect non-spherical structural clusters. However, GK algorithm needs added constraint of fuzzy covariance matrix, GK algorithm can only be used for the data with multivariate Gaussian distribution. A Fuzzy C-Means algorithm based on Mahalanobis distance (fcm-M) was proposed by our previous work to improve those limitations of GG and GK algorithms, but it is not stable enough when some of its covariance matrices are not equal. In this paper, A improved Fuzzy C-Means algorithm based on a Common Mahalanobis distance (fcm-cm) is proposed The experimental results of three real data sets show that the performance of our proposed fcm-cm algorithm is better than those of the fcm, GG, GK and fcm-M algorithms.
In this paper, we propose a factor weighted fuzzy c-means clustering algorithm. Based on the inverse of a covariance factor, which assesses the collinearity between the centers and samples, this factor takes also into...
详细信息
ISBN:
(纸本)9781479956807
In this paper, we propose a factor weighted fuzzy c-means clustering algorithm. Based on the inverse of a covariance factor, which assesses the collinearity between the centers and samples, this factor takes also into account the compactness of the samples within clusters. The proposed clustering algorithm allows to classify spherical and non-spherical structural clusters, contrary to classical fuzzy c-means algorithm that is only adapted for spherical structural clusters. Compared with other algorithms designed for non-spherical structural clusters, such as Gustafson-Kessel, Gath-Geva or adaptive Mahalanobis distance-based fuzzy c-means clustering algorithms, the proposed algorithm gives better numerical results on artificial and real well known data sets. Moreover, this algorithm can be used for high dimensional data, contrary to other algorithms that require the computation of determinants of large matrices. Application on Mid-Infrared spectra acquired on maize root and aerial parts of Miscanthus for the classification of vegetal biomass shows that this algorithm can successfully be applied on high dimensional data.
暂无评论