咨询与建议

限定检索结果

文献类型

  • 90 篇 期刊文献
  • 21 篇 会议
  • 1 册 图书

馆藏范围

  • 112 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 82 篇 工学
    • 63 篇 计算机科学与技术...
    • 21 篇 电气工程
    • 13 篇 控制科学与工程
    • 6 篇 软件工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 信息与通信工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 力学(可授工学、理...
    • 1 篇 光学工程
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 化学工程与技术
    • 1 篇 网络空间安全
  • 30 篇 理学
    • 17 篇 数学
    • 8 篇 生物学
    • 6 篇 物理学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 26 篇 医学
    • 24 篇 基础医学(可授医学...
    • 17 篇 临床医学
    • 1 篇 特种医学
  • 11 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 1 篇 工商管理
    • 1 篇 农林经济管理
    • 1 篇 公共管理
    • 1 篇 图书情报与档案管...
  • 5 篇 经济学
    • 4 篇 理论经济学
    • 2 篇 应用经济学
  • 3 篇 农学

主题

  • 112 篇 feedforward netw...
  • 16 篇 neural networks
  • 6 篇 artificial neura...
  • 5 篇 system identific...
  • 5 篇 recurrent networ...
  • 4 篇 pattern classifi...
  • 4 篇 function approxi...
  • 4 篇 activation funct...
  • 4 篇 cooperative coev...
  • 4 篇 machine learning
  • 4 篇 backpropagation
  • 4 篇 recurrent neural...
  • 3 篇 deep learning
  • 3 篇 constructive net...
  • 3 篇 universal approx...
  • 3 篇 approximation
  • 3 篇 backpropagation ...
  • 3 篇 artificial neura...
  • 3 篇 supervised learn...
  • 2 篇 coupled nonlinea...

机构

  • 3 篇 nanyang technol ...
  • 2 篇 san diego state ...
  • 2 篇 univ south pacif...
  • 2 篇 software fdn art...
  • 2 篇 univ s pacific s...
  • 2 篇 univ calif san d...
  • 2 篇 kochava inc sand...
  • 2 篇 guru gobind sing...
  • 2 篇 univ miami dept ...
  • 1 篇 department of co...
  • 1 篇 univ houston dep...
  • 1 篇 vrije univ amste...
  • 1 篇 amrita vishwa vi...
  • 1 篇 national technic...
  • 1 篇 department of ec...
  • 1 篇 victoria univ we...
  • 1 篇 demokritos natl ...
  • 1 篇 obafemi awolowo ...
  • 1 篇 oak ridge natl l...
  • 1 篇 tech univ munich...

作者

  • 6 篇 chandra rohitash
  • 3 篇 sarkar d
  • 3 篇 hornik k
  • 3 篇 huang guang-bin
  • 3 篇 white h
  • 2 篇 singh amit praka...
  • 2 篇 nijholt eddie
  • 2 篇 gencay r
  • 2 篇 coelho helder
  • 2 篇 holena martin
  • 2 篇 mittal apeksha
  • 2 篇 siew chee-kheong
  • 2 篇 marar joao ferna...
  • 2 篇 ma s
  • 2 篇 rink bob
  • 2 篇 ji cy
  • 2 篇 palacios antonio
  • 2 篇 nand ravneil
  • 2 篇 levasseur tyler
  • 2 篇 kurkova vera

语言

  • 101 篇 英文
  • 10 篇 其他
  • 1 篇 法文
检索条件"主题词=FEEDFORWARD NETWORKS"
112 条 记 录,以下是1-10 订阅
排序:
MULTILAYER feedforward networks ARE UNIVERSAL APPROXIMATORS
收藏 引用
NEURAL networks 1989年 第5期2卷 359-366页
作者: HORNIK, K STINCHCOMBE, M WHITE, H UNIV CALIF SAN DIEGO DEPT ECON D-008 LA JOLLA CA 92093 USA VIENNA TECH UNIV A-1040 VIENNA AUSTRIA
This paper rigorously establishes that standard multilayer feedforward networks with as few as one hidden layer using arbitrary squashing functions are capable of approximating any Borel measurable function from one f... 详细信息
来源: 评论
ENCODING A-PRIORI INFORMATION IN feedforward networks
收藏 引用
NEURAL networks 1991年 第6期4卷 847-856页
作者: JOERDING, WH MEADOR, JL Washington State University Pullman WA USA
Theoretical results and practical experience indicate that feedforward networks are very good at approximating a wide class of functional relationships. Training networks to approximate functions takes place by using ... 详细信息
来源: 评论
Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions
收藏 引用
IEEE TRANSACTIONS ON NEURAL networks 1998年 第1期9卷 224-229页
作者: Huang, GB Babri, HA Nanyang Technol Univ Sch Elect & Elect Engn Singapore 639798 Singapore
It is well known that standard single-hidden layer feed-forward networks (SLFN's) with at most N hidden neurons (including biases) can learn N distinct samples (x(i), t(i)) with zero error, and the weights connect... 详细信息
来源: 评论
CONNECTIONIST NONPARAMETRIC REGRESSION - MULTILAYER feedforward networks CAN LEARN ARBITRARY MAPPINGS
收藏 引用
NEURAL networks 1990年 第5期3卷 535-549页
作者: WHITE, H University of California San Diego USA
It has been recently shown (e.g., Hornik, Stinchcombe & White, 1989, 1990) that sufficiently complex multilayer feedforward networks are capable of representing arbitrarily accurate approximations to arbitrary map... 详细信息
来源: 评论
APPROXIMATION-THEORY AND feedforward networks
收藏 引用
NEURAL networks 1991年 第4期4卷 511-515页
作者: BLUM, EK LI, LK University of Southern California USA
Approximation of real functions by feedforward networks of the usual kind is shown to be based on the fundamental principle of approximation by piecewise-constant functions. This principle underlies a simple construct... 详细信息
来源: 评论
UNIVERSAL APPROXIMATION OF AN UNKNOWN MAPPING AND ITS DERIVATIVES USING MULTILAYER feedforward networks
收藏 引用
NEURAL networks 1990年 第5期3卷 551-560页
作者: HORNIK, K STINCHCOMBE, M WHITE, H UNIV CALIF SAN DIEGO DEPT ECON D-008 LA JOLLA CA 92093 USA
We give conditions ensuring that multilayer feedforward networks with as few as a single hidden layer and an appropriately smooth hidden layer activation function are capable of arbitrarily accurate approximation to a... 详细信息
来源: 评论
Formation of feedforward networks and frequency synchrony by spike-timing-dependent plasticity
收藏 引用
JOURNAL OF COMPUTATIONAL NEUROSCIENCE 2007年 第3期22卷 327-345页
作者: Masuda, Naoki Kori, Hiroshi RIKEN Brain Sci Inst Amari Res Unit Wako Saitama 3510198 Japan Hokkaido Univ Dept Math Kita Ku Sapporo Hokkaido 0600810 Japan
Spike-timing-dependent plasticity (STDP) with asymmetric learning windows is commonly found in the brain and useful for a variety of spike-based computations such as input filtering and associative memory. A natural c... 详细信息
来源: 评论
On adaptive learning rate that guarantees convergence in feedforward networks
收藏 引用
IEEE TRANSACTIONS ON NEURAL networks 2006年 第5期17卷 1116-1125页
作者: Behera, Laxmidhar Kumar, Swagat Patnaik, Awhan Indian Inst Technol Dept Elect Engn Kanpur 208016 Uttar Pradesh India
This paper investigates new learning algorithms (LF I and LF H) based on Lyapunov function for the training of feedforward neural networks. It is observed that such algorithms have interesting parallel with the popula... 详细信息
来源: 评论
Two strategies to avoid overfitting in feedforward networks
收藏 引用
NEURAL networks 1997年 第3期10卷 505-516页
作者: Schittenkopf, C Deco, G Brauer, W TECH UNIV MUNICH D-8000 MUNICH GERMANY
We present a new network topology to avoid overfitting in two-layered feedforward networks. We use two additional linear layers and principal component analysis to reduce the dimension of both inputs and internal repr... 详细信息
来源: 评论
Amplified steady state bifurcations in feedforward networks
收藏 引用
NONLINEARITY 2022年 第4期35卷 2073-2120页
作者: von der Grachf, Soeren Nijholt, Eddie Rink, Bob Univ Hamburg Dept Math Hamburg Germany Univ Sao Paulo ICMC Sao Carlos Brazil Vrije Univ Amsterdam Dept Math Amsterdam Netherlands
We investigate bifurcations in feedforward coupled cell networks. feedforward structure (the absence of feedback) can be defined by a partial order on the cells. We use this property to study generic one-parameter ste... 详细信息
来源: 评论