The spreading of high computational resources at very low costs led, over the years, to develop new numerical approaches to simulate the fluid surrounding a sail and to investigate the fluid-structure interaction. Mos...
详细信息
The spreading of high computational resources at very low costs led, over the years, to develop new numerical approaches to simulate the fluid surrounding a sail and to investigate the fluid-structure interaction. Most methods have concentrated on upwind sails, due to the difficulty of implementing downwind sailing configurations that present, usually, the problem of massive flow separation and large displacements of the sail under wind load. For these reasons, the problem of simulating the fluid-structure interaction (FSI) on downwind sails is still subject of intensive investigation. In this paper, a new weak coupled procedure between a RANS solver and a FEM one has been implemented to study the FSI problem in downwind sailing configurations. The proposed approach is based on the progressive increasing of the wind velocity until reaching the design speed. In this way, the structural load is also applied progressively, therefore, overcoming typical convergence difficulties due to the non-linearity of the problem. Simulations have been performed on an all-purpose fractional gennaker. The new proposed method has been also compared with a classic weak FSI approach. Comparable results have been obtained in terms of flying shape of the gennaker and fluid-dynamic loads. The most significant characteristic of the proposed procedure is the easiness to find a solution in a very robust way without convergence problem, and also the capability to reduce the simulation time with regard to the computational cost.
A fully coupled approach to large deformation fluid-structure interaction (FSI) using a nonlinear finite element (FEM) solver and a URANS/DES overset solver is presented. Since the relationship between strains and dis...
详细信息
A fully coupled approach to large deformation fluid-structure interaction (FSI) using a nonlinear finite element (FEM) solver and a URANS/DES overset solver is presented. Since the relationship between strains and displacement cannot be treated as linear at large deformation problems, a nonlinear FEM treating geometric nonlinearity is applied instead of a linear modal analysis for a structure solver. For large deformation the reinitialization of the overset hole-cutting, which is carried out by default only at the beginning of the computation, is performed automatically at each time step. The approach uses the gluing method to transfer the forces and displacements on non-matching grids for fluid and structure domains. A linear FEM solver is applied to deform the outer boundary of the boundary layer grids which wrap around the deformable geometries. The deformation of interior points in the boundary layer grid is obtained using linear interpolation. Three cases of rolling tanks partially filled with fluid with an elastic bar clamped to bottom or top are simulated and compared with experiments and other numerical simulation results. The simulation results of the presented method show good agreement with the experiments for bar deformation and free surface elevation. (C) 2014 Elsevier Ltd. All rights reserved.
The purpose of this paper is to investigate the problem of weak parting coupling between incompressible fluids and shell structures that can develop large displacements. For this, a code computational model with formu...
详细信息
The purpose of this paper is to investigate the problem of weak parting coupling between incompressible fluids and shell structures that can develop large displacements. For this, a code computational model with formulation based on the finite element method (FEM) for analysis of incompressible flows in arbitrary Lagrangian-Eulerian description (ALE), which is coupled to an existing dynamic analysis program. In this work a positional FEM approach for the dynamic shell modeling considering the geometric nonlinearity was coupled to an FEM based methodology for the simulation of Newtonian fluids in ALE description using quadratic order elements for velocity and linear for pressure. In addition, a coupling proposal without the need of coincidence of the nodes of the domains accompanied by a scheme of dynamic movement of the fluid network based on the use of an auxiliary mesh with cubic order elements was successfully implemented. For the consideration of the geometric nonlinearity of shell structures, a formulation described in positions that does not interpolate rotations as degrees of freedom was employed. This technique proved to be robust and capable of simulating dynamic instability problems. The treatment of the fluid by means of the mixed formulation, or pressure-velocity, with stabilization by means of the Streamline Upwind Petrov-Galerkin (SUPG) technique proved to be quite suitable for the simulation of laminar flows, producing satisfactory results and in accordance with the literature.
There is an increasing interest in the marine industry to use composites to improve the hydrodynamic and structural performance of naval structures. Composite materials have high strength-to-weight and stiffness-to-we...
详细信息
There is an increasing interest in the marine industry to use composites to improve the hydrodynamic and structural performance of naval structures. Composite materials have high strength-to-weight and stiffness-to-weight ratios, and the fiber orientations can be exploited to tailor the structural deformation to reduce the load and stress variations by automatically adjusting the shape of the structure. For marine propellers, the bending-twisting coupling characteristics of anisotropic composites can be exploited to passively tailor the blade rake, skew, and pitch distributions to improve propeller performance. To fully explore the advantages of composite marine propellers, a coupled boundary element (BEM) and finite element (FEM) approach is presented to study the fluid-structure interaction of flexible composite propellers in subcavitating and cavitating flows. An overview of the formulation for both the fluid and structural models is presented. Experimental validation studies are shown for two composite propellers tested at the Naval Surface Warfare Center (NSWCCD). The feasibility of passive hydroelastic tailoring of composite marine propellers is discussed. Published by Elsevier Ltd.
This study analyzes the effect of the flow conditions and the geometric variation of the microcantilever's bluff body on the microcantilever detection capabilities within a fluidic using a finite element fluid-str...
详细信息
This study analyzes the effect of the flow conditions and the geometric variation of the microcantilever's bluff body on the microcantilever detection capabilities within a fluidic using a finite element fluid-structure interaction (FSI) model Periodic steady-state results of the current investigation show that the magnitude of the inlet fluid velocity, elasticity of the microcantilever, random noise, and the height of the bluff body has respective profound effect on deflection of the microcantilever. Low inlet fluid velocity condition exhibits no vortices around the microcantilever However, the introduction of a random noise in the fluidic cell may cause the microcantilever to oscillate in a harmonic mode at low velocity. The results of this study show that microcantilevers excite earlier for large height compared with smaller heights of the bluff body at high inlet fluid velocity. This work paves the road for researchers in the area microcantilever to design efficient microcantilevers that display least errors in the measurements. (C) 2010 Elsevier Ltd All rights reserved
A method for the performance computation of an expandable-impeller pump is developed and validated. Large deformations of the highly flexible pump impellers result in a strong coupling between the impeller and fluid f...
详细信息
A method for the performance computation of an expandable-impeller pump is developed and validated. Large deformations of the highly flexible pump impellers result in a strong coupling between the impeller and fluid flow. The computational method therefore requires simultaneous solution of fluid flow and structural response. OpenFOAM provides the flow and mesh motion solvers and is coupled to an author-developed structural solver in a tightly coupled approach using a fixed-point iteration. The structural deformations are time-dependent because the material exhibits stress relaxation. The time-constant of the relaxation, however, is very large, thereby allowing quasi-steady simulations. A water-tunnel test of a viscoelastic hydrofoil is employed to validate the solver. Simulations of the test problem show good agreement with the experimental results and demonstrate the need for several sub-iterations of the solver even for the quasi-steady simulations. (C) 2011 Elsevier Ltd. All rights reserved.
In the present study, a numerical model of the injection molding filling stage was developed by combining non-Newtonian behavior, heat transfer, and thermo-elastic behavior in order to precisely predict mold deformati...
详细信息
In the present study, a numerical model of the injection molding filling stage was developed by combining non-Newtonian behavior, heat transfer, and thermo-elastic behavior in order to precisely predict mold deformation. In general, local deformation of an injection mold can be caused by two critical factors - elastic compression induced by the plastic melt and thermal expansion due to rapid heat transfer from the plastic melt. As severe mold deformation lowers the dimensional accuracy of the molded product or results in failure of the injection mold, the accurate prediction of mold deformation is critical to the design and manufacture of precision injection mold. In this regard, a numerical model considering the relevant physical behavior was developed and applied to a center-gated disc model. Both the melt flow behavior and effect of heat transfer inside the mold cavity were investigated, which subsequently revealed that the dominant influence is that of thermal expansion due to heat transfer.
Hyperthermia is one of the non-invasive therapy of an Abdominal Aortic Aneurysm (AAA), which is achieved by applying a heat source upon the AAA without surgical operation. This research paper considers laminar flow an...
详细信息
Hyperthermia is one of the non-invasive therapy of an Abdominal Aortic Aneurysm (AAA), which is achieved by applying a heat source upon the AAA without surgical operation. This research paper considers laminar flow and heat transfer in a heated abdominal aortic aneurysm using an isothermal boundary condition. Heat is added to explicate the thermal treatment of a dis-eased artery. The blood is assumed as a non-Newtonian fluid based on the shear-thinning Carreau model. Two unequal aneurysms are assumed in the lower wall to simulate bulges or a disordered artery. Flexible wall segments are assumed in the upper wall and opposing to each aneurysm. The transient momentum and energy equations are solved based on the fluid-structure interaction (FSI) using the Arbitrary-Lagrangian-Eulerian (ALE) method. It is found that the shear stress is much higher for a higher index of the power-law fluid governing the blood viscosity and hence, it is strictly recommended to reduce the viscous nature of the blood in diseased vessels. It is found also that the thermal energy can be greatly transported across the blood at a higher Reynolds num-ber, this means that the hyperthermia therapy becomes effective when blood flows violently through the aortic.(c) 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license (http://***/ licenses/by-nc-nd/4.0/).
Numerical models of native heart valves are being used to study valve biomechanics to aid design and development of repair procedures and replacement devices. These models have evolved from simple two-dimensional appr...
详细信息
Numerical models of native heart valves are being used to study valve biomechanics to aid design and development of repair procedures and replacement devices. These models have evolved from simple two-dimensional approximations to complex three-dimensional, fully coupled fluid-structure interaction (FSI) systems. Such simulations are useful for predicting the mechanical and hemodynamic loading on implanted valve devices. A current challenge for improving the accuracy of these predictions is choosing and implementing modeling boundary conditions. In order to address this challenge, we are utilizing an advanced in vitro system to validate FSI conditions for the mitral valve system. Explanted ovine mitral valves were mounted in an in vitro setup, and structural data for the mitral valve was acquired with CT. Experimental data from the in vitro ovine mitral valve system were used to validate the computational model. As the valve closes, the hemodynamic data, high speed leaflet dynamics, and force vectors from the in vitro system were compared to the results of the FSI simulation computational model. The total force of 2.6 N per papillary muscle is matched by the computational model. In vitro and in vivo force measurements enable validating and adjusting material parameters to improve the accuracy of computational models. The simulations can then be used to answer questions that are otherwise not possible to investigate experimentally. This work is important to maximize the validity of computational models of not just the mitral valve, but any biomechanical aspect using computational simulation in designing medical devices.
This paper presents the effect of chip stacking in a 3D integrated circuit package during plastic encapsulation. An experiment was conducted on four stacked chips with bumps in a perimeter array. The flow front advanc...
详细信息
This paper presents the effect of chip stacking in a 3D integrated circuit package during plastic encapsulation. An experiment was conducted on four stacked chips with bumps in a perimeter array. The flow front advancement and chip displacement in the experiment were validated by using FLUENT 6.3 and ABAQUS 6.9, respectively. A total of four models, which consist of two, three, four, and five stacked chips with through-silicon vias, were studied numerically. A simultaneous or direct solution procedure was employed to solve the variables of the fluid/structural domain. This approach provides better visualization of the actual plastic encapsulation process by considering the fluid-structure interaction phenomenon during the process. A constant ratio of inlet and outlet gate heights was applied to create a more uniform flow front advancement among the models. Results indicate that the highest displacement occurred in Model 4, which contains the most stacked chips. The highest von Mises stress was also detected in Model 4. Therefore, unfavorable deformation is anticipated when more stacked chips are employed. The experimental and numerical studies provide useful information in understanding the fluid flow of epoxy resin and subsequent structural deformation under the effect of chip stacking. (C) 2013 Elsevier B.V. All rights reserved.
暂无评论