Two common abnormalities in ureters include primary refluxing megaureter (PRM) and primary obstructed megaureter (POM). The aim of this study was to represent the numerical simulation of the urine flow at the end of t...
详细信息
Two common abnormalities in ureters include primary refluxing megaureter (PRM) and primary obstructed megaureter (POM). The aim of this study was to represent the numerical simulation of the urine flow at the end of the ureter with vesicoureteral reflux (VUR) and POM during peristalsis. Methodologically, the peristalsis in the ureter wall was created using Gaussian distribution. fluid-structure interaction (FSI) was applied to simulate urine-elastic wall interactions;and governing equations were solved using the arbitrary Lagrangian-Eulerian method. Theories such as wall elasticity, Newtonian fluid, and incompressible Navier-Stokes equations were used. Velocity fields, viscous stresses and volumetric outflow rate profiles were obtained through the simulation of the ureter with VUR and POM during peristalsis. In addition, the effect of urine viscosity on flow rate was investigated. When the bladder pressure increased, VUR occurred because of the ureterovesical junction (UVJ) dysfunction, leading to high stresses on the wall. In the POM, the outflow rate was ultimately zero, and stresses on the wall were severe in the obstructed section. Comparing the results demonstrated that the peristalsis leads to even further dilation of the prestenosis portion. It was also observed that the reflux occurs in the ureter with VUR when the bladder pressure is high. Additionally, the urine velocity during the peristalsis was higher than the non-peristaltic ureter.
Children born with single ventricle heart defects typically undergo a staged surgical procedure culminating in a total cavopulmonary connection (TCPC) or Fontan surgery. The goal of this work was to perform physiologi...
详细信息
Children born with single ventricle heart defects typically undergo a staged surgical procedure culminating in a total cavopulmonary connection (TCPC) or Fontan surgery. The goal of this work was to perform physiologic, patient-specific hemodynamic simulations of two post-operative TCPC patients by using fluidstructureinteraction (FSI) simulations. Data from two patients are presented, and post-op anatomy is reconstructed from MRI data. Respiration rate, heart rate, and venous pressures are obtained from catheterization data, and inflow rates are obtained from phase contrast MRI data and are used together with a respiratory model. Lumped parameter (Windkessel) boundary conditions are used at the outlets. We perform FSI simulations by using an arbitrary LagrangianEulerian finite element framework to account for motion of the blood vessel walls in the TCPC. This study is the first to introduce variable elastic properties for the different areas of the TCPC, including a Gore-Tex conduit. Quantities such as wall shear stresses and pressures at critical locations are extracted from the simulation and are compared with pressure tracings from clinical data as well as with rigid wall simulations. Hepatic flow distribution and energy efficiency are also calculated and compared for all cases. There is little effect of FSI on pressure tracings, hepatic flow distribution, and time-averaged energy efficiency. However, the effect of FSI on wall shear stress, instantaneous energy efficiency, and wall motion is significant and should be considered in future work, particularly for accurate prediction of thrombus formation. Copyright (c) 2012 John Wiley & Sons, Ltd.
In the present study, we investigate the effect of the hemodynamic factors of the blood flow on the cerebral aneurysms. To this end, a hypothetical geometry of the aneurysm in the circle of Willis, located in the bifu...
详细信息
In the present study, we investigate the effect of the hemodynamic factors of the blood flow on the cerebral aneurysms. To this end, a hypothetical geometry of the aneurysm in the circle of Willis, located in the bifurcation point of the anterior cerebral artery (ACA) and anterior communicating artery (ACoA) is modeled in a three-dimensional manner. Three cases are chosen in the current study: an untreated thin wall (first case), untreated thick wall (second case), and a treated aneurysm (third case). The effect of increasing the aneurysm wall thickness on the deformation and stress distribution of the walls are studied. The obtained results showed that in the second case, a reduction in the deformations of the walls was observed. It was also shown that the Von Mises stress has a 10% reduction in the untreated thick wall aneurysm compared to the untreated thin wall aneurysm. Thus, increasing the thickness of the aneurysm wall can be proposed as temporary remedial action. In the third case, an aneurysm that has been treated by endovascular coiling is investigated. The deformation and Von Mises stress in this case was decreased more than 43% and 87% compared to the first case, respectively. The wall shear stress distribution due to the fluid flow in the first and second cases showed small amounts of shear stress on the aneurysm sac. In these two cases, the oscillatory shear index was measured to have an approximate value of 0.47 in the aneurysm region, though, this value was measured to be about 0.1 for the third case. The hybrid effect of the wall shear stress and the oscillatory shear index on the relative residence time (RRT) was also studied. When this parameter reaches its maximum, the aneurysm rupture may occur. It was shown that by treating the aneurysm (the third case), RRT parameter can be decreased 200 times relative to the first and second cases, which suggests an appropriate treatment of the aneurysm by choosing the coiling method.
The arbitrary Lagrange-Eulerian (ALE) finite element method (FEM) was successfully used to analyze fluid-structure interaction with a free surface. The fluid was regarded as a convection dominated incompressible visc...
详细信息
The arbitrary Lagrange-Eulerian (ALE) finite element method (FEM) was successfully used to analyze fluid-structure interaction with a free surface. The fluid was regarded as a convection dominated incompressible viscous with the viscous and the slip boundary conditions. Generalized variational principles were established for the problem with large amplitude sloshing due to the free fluid surface. The Newmark-β integration method with a predictor-corrector scheme was used to solve the nonlinear dynamic response of the coupled ALE-FEM equations. Numerical examples were given to analyze the effects of a tuned liquid damper (TLD) setting on the structure. The horizontal nonlinear displacement responses in time domain at the top of the structure and the fluid elevation histories along the wall were computed and compared with predictions of a simplified mass-spring system.
fluid-structure interaction of panel in supersonic fluid passage is studied with subcycling and spline interpolation based predict-correct scheme. The passage is formed with two parallel panels, one is rigid and the o...
详细信息
fluid-structure interaction of panel in supersonic fluid passage is studied with subcycling and spline interpolation based predict-correct scheme. The passage is formed with two parallel panels, one is rigid and the other is flexible. The interaction between fluid flows and flexible panel is numerically studied, mainly focused on the effect of dynamic pressure and distance between two parallel panels. Subcycling and spline interpolation based predict-correct scheme is utilized to combine the vibration and fluid analysis and to stabilize long-term calculations to get accurate results. It’s demonstrated that the flutter characteristic of flexible panel is more complex with the increase of dynamic pressure and the decrease of distance between two parallel panels. Via analyzing the propagation and reflection of disturbance in passage, it’s determined as a main cause of the variations.
The long-time existence of a weak solution is proved for a nonlinear, fluid-structure interaction (FSI) problem between an incompressible, viscous fluid and a semilinear cylindrical Koiter membrane shell with inertia....
详细信息
The long-time existence of a weak solution is proved for a nonlinear, fluid-structure interaction (FSI) problem between an incompressible, viscous fluid and a semilinear cylindrical Koiter membrane shell with inertia. No axial symmetry is assumed in the problem. The fluid flow is driven by the time dependent dynamic pressure data prescribed at the inlet and outlet boundaries of the 3D cylindrical fluid domain. The fluid and the elastic structure are fully coupled via continuity of velocity and continuity of normal stresses. Global existence of a weak solution is proved as long as the lateral walls of the cylinder do not touch each other. The main novelty of the work is the nonlinearity in the structure model: the model accounts for the fully nonlinear Koiter membrane energy, supplemented with a small linear fourth-order derivative term modeling the bending rigidity of shells. The existence proof is constructive, and it is based on an operator splitting scheme. A version of this scheme can be implemented for the numerical simulation of the underlying FSI problem by extending the FSI solver, developed by the authors in [5], to include the nonlinearity in the structure model discussed in this manuscript.
Numerical approaches to predict side-loads on over-expanded launcher engines, resulting from the aeroelasticity, are proposed in this study: a stability model and a fluidstructure model. The main idea is to offer a be...
详细信息
Numerical approaches to predict side-loads on over-expanded launcher engines, resulting from the aeroelasticity, are proposed in this study: a stability model and a fluidstructure model. The main idea is to offer a better understanding of the repercussions likely to appear from the aeroelastic coupling in terms of side loads resulting from the motion of the compression shock and that may be responsible of damage effects on the current engines. It is notably shown the existence of a given natural torsional frequency of the nozzle for which the measured side loads are maximum, phenomenon associated with a transversal wave in the flow between both walls. These studies aim to improve the only current aeroelastic stability model in over expanded nozzle.
This paper deals with numerical simulation of fluid-structure interaction as it occurs during aircraft ditching - an emergency condition where an aircraft is forced to land on water. The work is motivated by the requi...
详细信息
This paper deals with numerical simulation of fluid-structure interaction as it occurs during aircraft ditching - an emergency condition where an aircraft is forced to land on water. The work is motivated by the requirement for aircraft manufactures to analyze ditching as part of the aircraft certification process requested by airworthiness authorities. The strong interaction of highly non-linear fluid flow phenomena and structural responses requires a coupled solution of this transient problem. Therefore, an approach coupling Smoothed Particle Hydrodynamics and the Finite Element method within the commercial, explicit software Virtual Performance Solutions has been pursued. In this paper, several innovative features are presented, which allow for accurate and efficient solution. Finally, exemplary numerical results are successfully compared to experimental data from a unique test campaign of guided ditching tests at quasi-full scale impact conditions. It may be concluded that through the application of state-of-the-art numerical techniques it has become possible to simulate the coupled fluid-structure interaction as occurring during ditching. Therefore, aircraft manufacturers may significantly benefit from numerical analysis for design and certification purposes.
Three material systems: E-glass Vinyl-Ester (EVE) composites, sandwich composites with EVE facesheet and monolithic foam core (2 different core thicknesses), and monolithic aluminum alloy plates, were subjected to sho...
详细信息
Three material systems: E-glass Vinyl-Ester (EVE) composites, sandwich composites with EVE facesheet and monolithic foam core (2 different core thicknesses), and monolithic aluminum alloy plates, were subjected to shock wave loading to study their blast response and fluid-structure interaction behaviors. High-speed photography systems were utilized to obtain the real-time side-view and back face deformation images. A 3-D Digital Image Correlation (DIC) technique was used to analyze the real-time back face displacement fields and subsequently obtain the characteristic fluid-structure interaction time. The reflected pressure profiles and the deflection of the back face center point reveal that the areal density plays an important role in the fluid-structure interaction. The predictions from Taylor's model (classical solution, does not consider the compressibility) and model by Wang et al. (considers the compressibility) were compared with the experimental results. These results indicated that the model by Wang et al. can predict the experimental results accurately, especially during the characteristic fluid-structure interaction time. Further study revealed that the fluid-structure interaction between the fluid and the sandwich composites cannot be simplified as the fluid-structure interaction between the fluid and the facesheet. Also, it was observed that the core thickness affects the fluid-structure interaction behavior of sandwich composites.
暂无评论