A splitter plate is a key component of the inlet system in turbine-based combined-cycle engines, which divides the whole captured air flow into different engines, namely turbojet and ramjet. The aerodynamic force acti...
详细信息
A splitter plate is a key component of the inlet system in turbine-based combined-cycle engines, which divides the whole captured air flow into different engines, namely turbojet and ramjet. The aerodynamic force acting on the thin splitter plate with a single pivot may engender vibration and, in turn, flow-field variations at the start and end of the mode transition phase. A loosely-coupled method was used to simulate the process of fluid-structure interaction. The results showed that the deformation of the splitter plate is, in fact, a process in which the elastic restoring force struggles against the aerodynamic force under the action of damping. At turbojet mode, the splitter plate can attain the maximum displacement of 7.20 mm. The terminal shock was observed to move back and forth in the flowpath. The mass flow rate in turbojet and ramjet flowpaths varied by 5.91 and 44.34%, respectively. At ramjet mode, the inlet fell into the unstart state with a greater displacement of 8.95 mm. The mass flow rate in turbojet and ramjet flowpaths, and slot-coupled cavity varied by 1.69, 23.91, and 51.85%, respectively. (C) 2017 American Society of Civil Engineers.
We present a robust and efficient stabilised immersed framework for fluid-structure interaction involving incompressible fluid flow and flexible structures undergoing large deformations and also involving solid-solid ...
详细信息
We present a robust and efficient stabilised immersed framework for fluid-structure interaction involving incompressible fluid flow and flexible structures undergoing large deformations and also involving solid-solid contact. The efficiency of the formulation stems from the use of second-order accurate sequential staggered solution scheme for resolving fluid-solid coupling. Mixed Galerkin formulation, along with SUPG/PSPG stabilisation, is employed to obtain the numerical solutions of the incompressible Navier-Stokes equations. The immersed formulation is based on hierarchical b-spline grids, with unsymmetric Nitsche method employed to impose boundary as well as interface conditions on the fluid domain, while ghost-penalty operators are applied to alleviate the numerical instabilities arising due to small cut cells. The solid is modelled using linear continuum elements with finite strain formulation to facilitate the modelling of large structural deformations, and the contact between solids is modelled using the normal frictionless node-to-segment contact elements with Lagrange multipliers. In order to deal with the issue of uncovering for cut-cell based numerical schemes, a simple mapping technique is also introduced. Spatial and temporal convergence studies of the proposed scheme are performed by studying a simple example of flow over a deformable beam in cross flow. The robustness and accuracy of the proposed scheme are demonstrated by studying the benchmark examples of an oscillating beam in two-dimensions and flutter of a flexible simplified bridge deck in three-dimensions. In order to demonstrate the applicability of the proposed framework to complex fluid-structure interaction problems, the proposed methodology is used to simulate the fluid-structure interaction of a check valve with flexible valve plate. (C) 2018 Elsevier B.V. All rights reserved.
Aortic dissection (AD) is a serious medical condition characterized by a tear in the intima, the inner layer of the aortic walls. In such occurrence, blood is being diverted to the media (middle) layer and may result ...
详细信息
Aortic dissection (AD) is a serious medical condition characterized by a tear in the intima, the inner layer of the aortic walls. In such occurrence, blood is being diverted to the media (middle) layer and may result in patient death if not quickly attended. In the case where the diseased portion of the aorta needs to be replaced, one common surgical technique is to use a graft made of Dacron, a synthetic fabric. We investigate the response of a composite human aortic segment-Dacron graft structure subjected to blood flow using the three-dimensional fluid-structure-interaction (FSI) capability in Abaqus. We obtain stress and strain profiles in each of the three layers of the aortic walls as well as in the Dacron graft. Results are compared when elastic and hyperelastic models are used and when isotropy vs. anisotropy is assumed. The more complex case (hyperelastic-anisotropy) is represented by the Holzapfel-Gasser-Ogden (HGO) model which also accounts for the orientation of the fibers present in the tissues. The fluid flow is taken as Newtonian, incompressible, pulsatile and turbulent. The simulation show that for all the cases, the von Mises stress distribution at aorta-Dacron interface is well below the ultimate strength of the aorta. No significant change in radial displacement at the interface of the two materials due to blood flow is observed. Computation cost is also addressed and results show that the hyperelastic-anisotropic model takes about three times longer to run than the elastic isotropic case. Trade-off between accuracy and computational cost has to be weighted.
A spiral pipe type heater is applied to the natural gas transportation system to inhibit gas hydrate, but fracture failure often happens at the joint of a coil pipe and a gathering pipe. To understand the mechanical b...
详细信息
A spiral pipe type heater is applied to the natural gas transportation system to inhibit gas hydrate, but fracture failure often happens at the joint of a coil pipe and a gathering pipe. To understand the mechanical behavior of the spiral pipe heater, a mechanical model of the coil pipe acted by the gas fluid is constructed, and the mechanical characteristics of the fracture point are obtained by numerical calculation. Then, the relation between angle parameters and the axial force, shear force, bending moment as well as stress of the structure is gotten. Comparison calculations of heat exchange before and after structural adjustment are done to get the optimized structure parameters of better mechanical properties and high heating rate. From this study, it is found that although the mechanical properties are improved, when increasing an angle parameter, the heat transfer performance is decreased. A coordination method is used for resolving the contradiction between heat transfer performance and mechanical properties to get an overall performance optimization. The provided partitioning screening method can improve the heating efficiency and mechanical properties of the heater obviously and conveniently.
In this paper, we report our study on a numerical fluid-structure interaction problem originally presented by Mok et al.(2001) in two dimensions and later studied in three dimensions by Valdés Vazquez(2007), Lomb...
详细信息
In this paper, we report our study on a numerical fluid-structure interaction problem originally presented by Mok et al.(2001) in two dimensions and later studied in three dimensions by Valdés Vazquez(2007), Lombardi(2012), and Trimarchi(2012). We focus on a 3D test case in which we evaluated the sensitivity of several input parameters on the fluid and structural results. In particular, this analysis provides a starting point from which we can look deeper into specific aspects of these simulations and analyze more realistic cases, e.g., in sails design. In this study, using the commercial software ADINATM, we addressed a well-known unsteadiness problem comprising a square box representing the fluid domain with a flexible bottom modeled with structural shell elements. We compared data from previously published work whose authors used the same numerical approach, i.e., a partitioned approach coupling a finite volume solver(for the fluid domain) and a finite element solver(for the solid domain). Specifically, we established several benchmarks and made comparisons with respect to fluid and solid meshes, structural element types, and structural damping, as well as solution algorithms. Moreover, we compared our method with a monolithic finite element solution method. Our comparisons of new and old results provide an outline of best practices for such simulations.
Smoothed particle hydrodynamics (SPH) and the finite element method (FEM) are often combined with the scope to model the interaction between structures and the surrounding fluids (FSI). There is the case, for instance...
详细信息
Smoothed particle hydrodynamics (SPH) and the finite element method (FEM) are often combined with the scope to model the interaction between structures and the surrounding fluids (FSI). There is the case, for instance, of aircrafts crashing on water or speedboats slamming into waves. Due to the high computational complexity, the influence of air is often neglected, limiting the analysis to the interaction between structure and water. On the contrary, this work aims to specifically investigate the effect of air when merged inside the fluid-structure interaction (FSI) computational models. Measures from experiments were used as a basis to validate estimations comparing results from models that include or exclude the presence of air. Outcomes generally showed a great correlation between simulation and experiments, with marginal differences in terms of accelerations, especially during the first phase of impact and considering the presence of air in the model.
The problem of determining the manner in which an incoming acoustic wave is scattered by an elastic body immersed in a fluid is one of the central importance in detecting and identifying submerged objects. The problem...
详细信息
The problem of determining the manner in which an incoming acoustic wave is scattered by an elastic body immersed in a fluid is one of the central importance in detecting and identifying submerged objects. The problem is generally referred to as a fluid-structure interaction and is mathematically formulated as a time-dependent transmission problem. In this paper, we consider a typical fluid-structure interaction problem by using a coupling procedure that reduces the problem to a nonlocal initial-boundary problem in the elastic body with a system of integral equations on the interface between the domains occupied by the elastic body and the fluid. We analyze this nonlocal problem by the Lubich approach via the Laplace transform, an essential feature of which is that it works directly on data in the time domain rather than in the transformed domain. Our resultsmay serve as a mathematical foundation for treating time-dependent fluid-structure interaction problems by convolution quadrature coupling of FEM and BEM. Copyright (C) 2015 John Wiley & Sons, Ltd.
Nuclear industry needs tools to design reactor cores in case of earthquake. A fluid-structure model simulating the response of the core to a seismic excitation has been developed. Full scale tests considering one fuel...
详细信息
Nuclear industry needs tools to design reactor cores in case of earthquake. A fluid-structure model simulating the response of the core to a seismic excitation has been developed. Full scale tests considering one fuel assembly are performed to identify coefficients (added mass and damping) that will be used as inputs in the models. Tests showed that the axial water flow induced an added stiffness. In the paper, an expression of the model accounting for the fluid in the fuel assembly with a porous media model and in the by-passes with a leakage flow model is developed. Numerical simulations are compared to experiments and showed good agreement. (C) 2016 Elsevier Ltd. All rights reserved.
This paper presents a newly developed high-fidelity fluid-structure interaction simulation tool for geometrically resolved rotor simulations of wind turbines. The tool consists of a partitioned coupling between the st...
详细信息
This paper presents a newly developed high-fidelity fluid-structure interaction simulation tool for geometrically resolved rotor simulations of wind turbines. The tool consists of a partitioned coupling between the structural part of the aero-elastic solver HAWC2 and the finite volume computational fluid dynamics (CFD) solver EllipSys3D. The paper shows that the implemented loose coupling scheme, despite a non-conservative force transfer, maintains a sufficient numerical stability and a second-order time accuracy. The use of a strong coupling is found to be redundant. In a first test case, the newly developed coupling between HAWC2 and EllipSys3D (HAWC2CFD) is utilized to compute the aero-elastic response of the NREL 5-MW reference wind turbine (RWT) under normal operational conditions. A comparison with the low-fidelity but state-of-the-art aero-elastic solver HAWC2 reveals a very good agreement between the two approaches. In a second test case, the response of the NREL 5-MW RWT is computed during a yawed and thus asymmetric inflow. The continuous good agreement confirms the qualities of HAWC2CFD but also illustrates the strengths of a computationally cheaper blade element momentum theory (BEM) based solver, as long as the solver is applied within the boundaries of the employed engineering models. Two further test cases encompass flow situations, which are expected to exceed the limits of the BEM model. However, the simulation of the NREL 5-MW RWT during an emergency shut down situation still shows good agreements in the predicted structural responses of HAWC2 and HAWC2CFD since the differences in the computed force signals only persist for an insignificantly short time span. The considerable new capabilities of HAWC2CFD are finally demonstrated by simulating vortex-induced vibrations on the DTU 10-MW wind turbine blade in standstill. Copyright (c) 2016 John Wiley & Sons, Ltd.
Transcatheter aortic valve replacement (TAVR) represents an established recent technology in a high risk patient base. To better understand TAVR performance, a fluid-structure interaction (FSI) model of a self-expanda...
详细信息
Transcatheter aortic valve replacement (TAVR) represents an established recent technology in a high risk patient base. To better understand TAVR performance, a fluid-structure interaction (FSI) model of a self-expandable transcatheter aortic valve was proposed. After an in vitro durability experiment was done to test the valve, the FSI model was built to reproduce the experimental test. Lastly, the FSI model was used to simulate the virtual implant and performance in a patient-specific case. Results showed that the leaflet opening area during the cycle was similar to that of the in vitro test and the difference of the maximum leaflet opening between the two methodologies was of 0.42%. Furthermore, the FSI simulation quantified the pressure and velocity fields. The computed strain amplitudes in the stent frame showed that this distribution in the patient-specific case is highly affected by the aortic root anatomy, suggesting that the in vitro tests that follow standards might not be representative of the real behavior of the percutaneous valve. The patient-specific case also compared in vivo literature data on fast opening and closing characteristics of the aortic valve during systolic ejection. FSI simulations represent useful tools in determining design errors or optimization potentials before the fabrication of aortic valve prototypes and the performance of tests.
暂无评论