The similarity measure plays the key role in the self-learning framework for single image super-resolution. This paper involves matrix regression with properties of robustness and two-dimensional structure to measure ...
详细信息
The similarity measure plays the key role in the self-learning framework for single image super-resolution. This paper involves matrix regression with properties of robustness and two-dimensional structure to measure the similarity between image blocks and enhance the effect of super-resolution. Specifically, we use the minimal nuclear norm of representation error as a criterion, and the alternating direction method of multipliers (ADMM) to calculate the similarity between high- and low-resolution image blocks. Evaluation on several images with different interference and experimental results of super-resolution images clearly demonstrate the advantages of our proposed method in visual robustness and super-resolution effects.
暂无评论