A singleelectrontransistorbased on a silicon-on-insulator is successfully fabricated with electron-beam nano- lithography, inductively coupled plasma etching, thermal oxidation and other techniques. The unique desi...
详细信息
A singleelectrontransistorbased on a silicon-on-insulator is successfully fabricated with electron-beam nano- lithography, inductively coupled plasma etching, thermal oxidation and other techniques. The unique design of the pattern inversion is used, and the pattern is transferred to be negative in the electron-beam lithography step. The oxidation process is used to form the silicon oxide tunneling barriers, and to further reduce the effective size of the quantum dot. Combinations of these methods offer advantages of good size controllability and accuracy, high reproducibility, low cost, large-area contacts, allowing batch fabrication of singleelectrontransistors and good integration with a radio-frequency tank circuit. The fabricated singleelectrontransistor with a quantum dot about 50nto in diameter is demonstrated to operate at temperatures up to 70K. The charging energy of the Coulomb island is about 12.5meV.
暂无评论