咨询与建议

限定检索结果

文献类型

  • 7 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 10 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 10 篇 工学
    • 8 篇 电气工程
    • 7 篇 计算机科学与技术...
    • 2 篇 电子科学与技术(可...
    • 2 篇 软件工程
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 网络空间安全
  • 2 篇 理学
    • 2 篇 数学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学

主题

  • 10 篇 fast learning al...
  • 3 篇 neural network
  • 2 篇 on-line processi...
  • 2 篇 noise reduction
  • 2 篇 neurons
  • 1 篇 fully complex-va...
  • 1 篇 deep learning ne...
  • 1 篇 iris recognition
  • 1 篇 hidden layer com...
  • 1 篇 autoregressive p...
  • 1 篇 fully complex-va...
  • 1 篇 mean-square erro...
  • 1 篇 approximation al...
  • 1 篇 iris
  • 1 篇 exponential acti...
  • 1 篇 generalization
  • 1 篇 function approxi...
  • 1 篇 neural nets
  • 1 篇 feedforward neur...
  • 1 篇 qam equalization...

机构

  • 1 篇 nanyang technol ...
  • 1 篇 hong kong polyte...
  • 1 篇 lucent technol i...
  • 1 篇 open univ sch sc...
  • 1 篇 tottori univ tot...
  • 1 篇 kharkiv natl uni...
  • 1 篇 wenzhou kean uni...
  • 1 篇 jiangnan univ sc...
  • 1 篇 minist educ & sc...
  • 1 篇 faculty of engin...
  • 1 篇 univ waterloo de...
  • 1 篇 school of distan...
  • 1 篇 sjce mysore karn...
  • 1 篇 school of inform...
  • 1 篇 univ calgary dep...
  • 1 篇 hong kong polyte...
  • 1 篇 indiana univ pur...
  • 1 篇 fuzhou univ coll...
  • 1 篇 kharkiv natl uni...
  • 1 篇 it step univ lvo...

作者

  • 2 篇 yoshimura h
  • 2 篇 sugata k
  • 2 篇 isu n
  • 2 篇 shimizu t
  • 1 篇 palakal mj
  • 1 篇 gu suhang
  • 1 篇 suresh s.
  • 1 篇 horio k
  • 1 篇 cheung chi-chung
  • 1 篇 rashkevych yuriy
  • 1 篇 savitha r.
  • 1 篇 tamukoh h
  • 1 篇 chung fu-lai
  • 1 篇 xia youshen
  • 1 篇 yamakawa t
  • 1 篇 ye shiwei
  • 1 篇 kamel mohamed s.
  • 1 篇 xu sean shenshen...
  • 1 篇 sundararajan n.
  • 1 篇 liang m

语言

  • 8 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"主题词=Fast learning algorithm"
10 条 记 录,以下是1-10 订阅
排序:
fast learning algorithm for feed forward neural networks
收藏 引用
Jisuanji Gongcheng/Computer Engineering 2005年 第10期31卷 142-144+176页
作者: Jia, Wenchen Ye, Shiwei School of Distance and Continuing Education Grad. Sch. Chinese Academy of Sci. Beijing 100039 China School of Information Sci. and Engineering Grad. Sch. Chinese Academy of Sci. Beijing 100039 China
This paper presents a new algorithm for feed forward neural networks based on a new optimal target function constructed according to Young inequality in the conjugate of convex function. The optimal target function is... 详细信息
来源: 评论
A fast learning algorithm with Promising Convergence Capability
A Fast Learning Algorithm with Promising Convergence Capabil...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Cheung, Chi-Chung Ng, Sin-Chun Lui, Andrew K. Xu, Sean Shensheng Hong Kong Polytech Univ Dept Elect & Informat Engn Hong Kong Hong Kong Peoples R China Open Univ Sch Sci Technol Hong Kong Peoples R China
Backpropagation (BP) learning algorithm is the most widely supervised learning technique which is extensively applied in the training of multi-layer feed-forward neural networks. Many modifications of BP have been pro... 详细信息
来源: 评论
fast learning algorithms for self-organizing map employing rough comparison WTA and its digital hardware implementation
收藏 引用
IEICE TRANSACTIONS ON ELECTRONICS 2004年 第11期E87C卷 1787-1794页
作者: Tamukoh, H Horio, K Yamakawa, T Kyushu Inst Technol Grad Sch Life Sci & Syst Engn Kitakyushu Fukuoka 8080196 Japan
This paper describes a new fast learning algorithm for Self-Organizing Map employing a "rough comparison winner-take-all" and its digital hardware architecture. In rough comparison winner-take-all algorithm,... 详细信息
来源: 评论
The Autoencoder Based on Generalized Neo-Fuzzy Neuron and its fast learning for Deep Neural Networks  2
The Autoencoder Based on Generalized Neo-Fuzzy Neuron and it...
收藏 引用
2nd IEEE International Conference on Data Stream Mining and Processing (DSMP)
作者: Bodyanskiy, Yevgeniy Peleshko, Dmytro Rashkevych, Yuriy Vynokurova, Olena Kharkiv Natl Univ Radio Elect Control Syst Res Lab Kharkov Ukraine IT Step Univ Lvov Ukraine Minist Educ & Sci Ukraine Kiev Ukraine Kharkiv Natl Univ Radio Elect Kharkov Ukraine
In this paper the autoencoder based on the generalized neo-fuzzy neurons is proposed. Also its fast learning algorithm based on quadratic criterion was proposed. Such system can be used as part of deep learning system... 详细信息
来源: 评论
A fast learning Fully Complex-valued Relaxation Network (FCRN)
A Fast Learning Fully Complex-valued Relaxation Network (FCR...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Suresh, S. Savitha, R. Sundararajan, N. Nanyang Technol Univ Sch Comp Engn Singapore Singapore SJCE Mysore Karnataka India
This paper presents a fast learning algorithm for a single hidden layer complex-valued neural network named as the "Fully Complex-valued Relaxation Network (FCRN)". FCRN employs a fully complex-valued Gaussi... 详细信息
来源: 评论
A fast algorithm for AR parameter estimation using a novel noise-constrained least-squares method
收藏 引用
NEURAL NETWORKS 2010年 第3期23卷 396-405页
作者: Xia, Youshen Kamel, Mohamed S. Leung, Henry Fuzhou Univ Coll Math & Comp Sci Fuzhou Peoples R China Univ Waterloo Dept Elect & Comp Engn Waterloo ON N2L 3G1 Canada Univ Calgary Dept Elect & Comp Engn Calgary AB T2N 1N4 Canada
In this paper, a novel noise-constrained least-squares (NCLS) method for online autoregressive (AR) parameter estimation is developed under blind Gaussian noise environments, and a discrete-time learning algorithm wit... 详细信息
来源: 评论
A Novel Style Takagi-Sugeno-Kang Fuzzy Classifier With Its fast Training on Style Data
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2024年 第4期34卷 2814-2831页
作者: Gu, Suhang Chung, Fu-Lai Wang, Shitong Changshu Inst Technol Sch Elect Engn & Automat Jiangsu 215500 Peoples R China Jiangnan Univ Sch AI & Comp Sci Wuxi 214122 Peoples R China Hong Kong Polytech Univ Dept Comp Hong Kong Peoples R China Wenzhou Kean Univ Dept Comp Sci Wenzhou 325015 Peoples R China
The classification of style data generally depends on both physical features of data and distinct styles originating from their own homogeneities. As a first attempt, a novel style Takagi-Sugeno-Kang (TSK) fuzzy class... 详细信息
来源: 评论
Airborne sonar target recognition using artificial neural network
收藏 引用
MATHEMATICAL AND COMPUTER MODELLING 2002年 第3-4期35卷 429-440页
作者: Liang, M Palakal, MJ Indiana Univ Purdue Univ Dept Comp & Informat Sci Indianapolis IN 46202 USA Lucent Technol Inc Holmdel NJ 07733 USA
Airborne sonar target recognition involves two key technical issues: target feature extraction and classification. In this paper, the issue designing a feature classifier with high classification accuracy is discussed... 详细信息
来源: 评论
An adaptive noise reduction filter for discrete signal by use of sandglass-type neural network
收藏 引用
ELECTRICAL ENGINEERING IN JAPAN 1999年 第4期127卷 39-51页
作者: Yoshimura, H Shimizu, T Isu, N Sugata, K Tottori Univ Tottori Japan
An adaptive noise reduction filter composed of a sandglass-type neural network (SNN) noise reduction filter (RF) is proposed in this paper. SNN was originally devised to work effectively for information compression. I... 详细信息
来源: 评论
Construction of noise reduction filter by use of Sandglass-type Neural network
收藏 引用
IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES 1997年 第8期E80A卷 1384-1390页
作者: Yoshimura, H Shimizu, T Isu, N Sugata, K Faculty of Engineering Tottori University Tottori-shi 680 Japan
A noise reduction filter composed of a sandglass-type neural network (Sandglass-type Neural network Noise Reduction Filter: SNNRF) was proposed in the present paper. Sandglass-type neural network (SNN) has symmetrical... 详细信息
来源: 评论