咨询与建议

限定检索结果

文献类型

  • 6 篇 期刊文献

馆藏范围

  • 6 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 5 篇 工学
    • 4 篇 计算机科学与技术...
    • 2 篇 软件工程
  • 4 篇 理学
    • 4 篇 数学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...

主题

  • 6 篇 feedback arc set...
  • 2 篇 approximation al...
  • 1 篇 tournaments
  • 1 篇 tournament
  • 1 篇 rank aggregation
  • 1 篇 algorithms
  • 1 篇 5g network slici...
  • 1 篇 acyclic subgraph...
  • 1 篇 acyclic subdigra...
  • 1 篇 parallel topolog...
  • 1 篇 theory
  • 1 篇 borda's method
  • 1 篇 weakly acyclic d...
  • 1 篇 integer linear p...
  • 1 篇 vnfs reconfigura...
  • 1 篇 facets of polyhe...
  • 1 篇 polynomial time ...
  • 1 篇 bipartite tourna...
  • 1 篇 knapsack problem

机构

  • 1 篇 univ autonoma me...
  • 1 篇 orange labs heud...
  • 1 篇 idsia usi supsi ...
  • 1 篇 ias princeton nj...
  • 1 篇 suny buffalo dep...
  • 1 篇 univ augsburg in...
  • 1 篇 orange labs chat...
  • 1 篇 tel aviv univ ra...
  • 1 篇 warsaw univ tech...
  • 1 篇 univ autonoma me...
  • 1 篇 ida ctr commun r...
  • 1 篇 univ technol com...
  • 1 篇 dartmouth coll d...

作者

  • 1 篇 mastrolilli mona...
  • 1 篇 coppersmith don
  • 1 篇 kumbria kristina
  • 1 篇 biallach hanane
  • 1 篇 tomaszewski artu...
  • 1 篇 nace dritan
  • 1 篇 llano b.
  • 1 篇 fleischer lisa k...
  • 1 篇 grotschel m
  • 1 篇 alon n
  • 1 篇 reinelt g
  • 1 篇 bouhtou mustapha
  • 1 篇 rurda atri
  • 1 篇 gonzalez-moreno ...
  • 1 篇 junger m
  • 1 篇 rivera-campo e.

语言

  • 6 篇 英文
检索条件"主题词=Feedback arc set problem"
6 条 记 录,以下是1-10 订阅
排序:
A Note on the feedback arc set problem and Acyclic Subdigraphs in Bipartite Tournaments
收藏 引用
JOURNAL OF INTERCONNECTION NETWORKS 2017年 第3-4期17卷 1741004-1741004页
作者: Gonzalez-Moreno, D. Llano, B. Rivera-Campo, E. Univ Autonoma Metropolitana Cuajimalpa Dept Matemat Aplicadas & Sistemas Ave Vasco de Quiroga 4871 Mexico City 05348 DF Mexico Univ Autonoma Metropolitana Iztapalapa Dept Matemat San Rafael Atlixco 186 Mexico City 09340 DF Mexico
Given a digraph D a feedback arc set is a subset X of the arcs of D such that D - X is acyclic. Let beta(D) denote de minimum cardinality of a feedback arc set of D. In this paper we prove that a bipartite tournament ... 详细信息
来源: 评论
The feedback arc set problem with Triangle Inequality Is a Vertex Cover problem
收藏 引用
ALGORITHMICA 2014年 第2期70卷 326-339页
作者: Mastrolilli, Monaldo IDSIA USI SUPSI Lugano Switzerland
We consider the (precedence constrained) Minimum feedback arc set problem with triangle inequalities on the weights, which finds important applications in problems of ranking with inconsistent information. We present ... 详细信息
来源: 评论
Virtual network function reconfiguration in 5G networks: An optimization perspective
收藏 引用
NETWORKS 2024年 第4期83卷 673-691页
作者: Biallach, Hanane Bouhtou, Mustapha Kumbria, Kristina Nace, Dritan Tomaszewski, Artur Orange Labs Heudiasyc Chatillon France Orange Labs Chatillon France Univ Technol Compiegne Heudiasyc Compiegne France Warsaw Univ Technol Warsaw Poland
One of the major challenges in managing 5G networks is the reconfiguration of network slices. The task covers in particular reconfiguration and relocation of virtual network functions (VNFs) so as to match the service... 详细信息
来源: 评论
Ordering by Weighted Number of Wins Gives a Good Ranking for Weighted Tournaments
收藏 引用
ACM TRANSACTIONS ON ALGORITHMS 2010年 第3期6卷 55-55页
作者: Coppersmith, Don Fleischer, Lisa K. Rurda, Atri IDA Ctr Commun Res Princeton NJ 08540 USA Dartmouth Coll Dept Comp Sci Hanover NH 03755 USA SUNY Buffalo Dept Comp Sci & Engn Buffalo NY 14260 USA
We consider the following simple algorithm for feedback arc set problem in weighted tournaments: order the vertices by their weighted indegrees. We show that this algorithm has an approximation guarantee of 5 if the w... 详细信息
来源: 评论
Ranking tournaments
收藏 引用
SIAM JOURNAL ON DISCRETE MATHEMATICS 2006年 第1期20卷 137-142页
作者: Alon, N Tel Aviv Univ Raymond & Beverly Sackler Fac Exact Sci Sch Math & Comp Sci IL-69978 Tel Aviv Israel IAS Princeton NJ 08540 USA
A tournament is an oriented complete graph. The feedback arc set problem for tournaments is the optimization problem of determining the minimum possible number of edges of a given input tournament T whose reversal mak... 详细信息
来源: 评论
ON THE ACYCLIC SUBGRAPH POLYTOPE
收藏 引用
MATHEMATICAL PROGRAMMING 1985年 第1期33卷 28-42页
作者: GROTSCHEL, M JUNGER, M REINELT, G UNIV AUGSBURG INST MATHMEMMINGER STR 6D-8900 AUGSBURGFED REP GER
The acyclic subgraph problem can be formulated as follows. Given a digraph with arc weights, find a set of arcs containing no directed cycle and having maximum total weight. We investigate this problem from a polyhedr... 详细信息
来源: 评论